Monitoring lakes and water bodies in arid and semi-arid regions

M. Grippa, F. Guerin, L. Kergoat, L. Gal, E. Robert Géosciences Environnement Toulouse, France

> J.F. Cretaux LEGOS, Toulouse, France

D. Serça Laboratoire d'Aerologie, Toulouse, France

Distribution of fresh water over the continents

- High geographycal correlation between the water widthdrawal and available water per person and per year
- High water intake from 1995 to 2025 in the sahelian zone, the middle east, central Asia, India and China where the most arid zones are located

Context

- Arid and semi-arid regions characateristics:
- High spatio-temporal climate variability (precipitation)
- High anthropogenic pressure

• Surface water is fundamental!

- Critical resource (people-domestic use-, irrigation, livestock)
- Health issues: water-borne diseases (malaria, diarrheic diseases)
- Carbon and methane cycles

• But poorly known:

- Lack of infrastructure and monitoring network
- Hydrology poorly understood, difficult for modelling
- GHGs emissions almost unknown

→ remote sensing well suited for monitoring surface water (water extent, water level, turbidity and sediments, temperature) in these regions, even if challenging (atmospheric perturbations, important seasonal dynamics, extreme values)

The Aral Sea (Kazakstanµ/Uzbekistan)

satellite altimetry + imagery to survey large lakes in arid zones

61.5

61.0

60.0 Iongitude

Water budget of the Aral Sea: dV/dt = inflow - outflow

Current desiccation of the Aral Sea

No in operationnal in situ observations after 2000=> Altimetry offers a continuous operationnal survey monitoring of all inividual water bodies

Separation of Aral Sea in 1989 into small (North) and big (South) Aral Sea=> Small Aral at long term equilibrium Separation of Big Aral after 2010-2012 into SW and SE Aral Sea => SE Aral in relatively stable equilibriu since SW Aral continues to shrink

The Lop Nur & Bosten (China)

- Lop Nur lake is a terminal lake in very arid region within the Tarim Basin
- It is highly ephemeral

2009

 Lop Nur is linked to irrigation along the Tarim river and to the water release from the Bosten lake

Water surface from Modis analysis

Bosten lake (release from dam after 2002)

Water level from altimetry multi missions

Water level using combination of Modis and altimetry

The Agoufou lake (northern Mali)

Sahelian paradox: General increase of ponds area (mostly turbid ponds) despite the precipitation decline (*Gardelle et al.*, *HESS*, 2010)

Estimation of water volumes

In situ height measurements by the AMMA-CATCH observatory

Gal et al. , JH, 2016

Water inflow estimation : lakes used as gauges!

Lake water balance: dV/dt = R + P - E - G

Dry season dV/dt = $-E - G \rightarrow$ possible to derive information on surface-ground water exchanges

Annual Runoff/Precipitation over the watershed

Gal et al. , JH, 2016

 \rightarrow Quantification runoff increase \rightarrow base for modelling

KINEROS2 model

Vegetation degradation on shallow soils after the major droughts and soil erosion are the major factors accounting for the runoff increase between past and present \rightarrow climate!

Gal et al. HESS 2017 under rev

Water turbidity and suspended solid concentration

- Extremely high values of turbidity and SSSC (up to 4000 mg/l) linked to important soil erosion
- Good agreement between RS reflectances (MODIS and LANDSAT) and in-situ SSSC

- SSSC increase at the beginning of the rainy season
- Important re-suspension during the dry season

Jan-13Apr-13 Jul-13 Oct-13 Jan-14 Apr-14 Jul-14 Oct-14 Jan-15 Apr-15 Jul-15 Oct-15 Jan-16 Apr-16 Jul-16 Oct-16

Robert et al. , 2017, in prep

Bagré reservoir, Burkina Faso

- Important spatio temporal variability (SPOT TAKE 5)
- Significant increase over 2000-2016 (MODIS) possibly linked to LC/LU changes

GHG emission from Sahelian ponds

16°26'N

16°10'N

15°54'N

Carbon storage and greenhouse gas emissions from temporary and permanent ponds in semi-arid region (Senegal) (Preliminary results from Assouma et al., 2017, J Arid Land)

- Lakes and ponds represented about 3% of the sylvo-
- Those ponds emitted 93% of the CH_4 from the area, mostly in the wet season
 - Apart from a real quantification with proper sampling strategy, the following factors to be considered in the future:
 - Sedimentation (Mabicka Obame et al., 2014 showed rates similar to those in large reservoirs)
 - Carbon and Nitrogen transfer from the cattle

Lots of scientific questions still open!

- Future evolution of water bodies (quantity and quality) under climate and anthropogenic changes?
- Impact on water resources?
- GHGs emission (wetlands, shorelines)?
- Health issues (bacteria-turbidity links)?

→ Continuous monitoring is fundamental!

- Remote sensing has proved successful to derive different water parameters in these poorly instrumented regions→ towards and integrated vision of water bodies and lakes
- New opportunities with Sentinel2 and SWOT to address small and dynamics water bodies!

Estimation of water heights (SWOT)

Retrieved height by SWOT simulator (stage C. Rouzies, coll GET-LEGOS)

- → High potential for SWOT to retrieve height (but only instrumental errors taken into account: tropospheric delay?).
- \rightarrow Performances over other kinds of waters (vegetated, different shapes)
- → Water masks can be difficult given the high sigma0 over soil (from GPM): coupling S2/SWOT interesting

Decadal evolution, Bagré lake

Increased turbidity over the 2000-2015 period

- ightarrow Increased soil erosion
- vegetation degradation due to land use changes?
- land cover changes?
 - Increase in precipitation intensity?

