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GPM Constellation Concept

PM Core Observatory =R == |

(NASA/JAXA, 2014)

DPR (Ku & Ka band) Next-Generation Unified Global
GMI (10-183 GHz) Precipitation Products Using GPM
65° Incl, 407 km altitude Core Observatory as Reference

5 km best footprint
0.2 — 110 mm/hr and snow
Lifetime: 3, 5, 15 years
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Dual-Frequency (Ku-Ka band)
Precipitation Radar (DPR):

=[ncreased sensitivity (~12 dBZ) for light rain
and snow detection relative to TRMM

=Better measurement accuracy with differential RS A
. . = Nl
attenuation correction Dustrequency a
. . . . . KuPR: Ku-band (13.6 GHz)
=Detailed microphysical information (DSD sl 5 )

Range 2
Resolution; -

mean mass diameter & particle no. density) &
identification of liquid, ice, and mixed-phase
regions

Multi-Channel (10-183 GHz)
GPM Microwave Imager (GMI):

=Higher spatial resolution (IFOV: 6-26 km)
=[mproved light rain & snow detection

Flight Direction
407 km Altitude
65 deg Inclination

=Improved signals of solid precipitation over _ : :
land (especially over snow- covered surfaces) Combined Radar-Radiometer Retrieval

={-point calibration to serve as a radiometric ™ DPR & GMI together provide greater constraints on

reference for constellation radiometers possible solutions to improve retrieval accuracy

=Observation-based a-priori cloud database for
constellation radiometer retrievals

IPWG, November 17-20, 2014 Page 4
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One day after flooding the
Solomon Islands, the
precursor to Tropical

Cyclone Ita is seen by GPM

4 April 2014 0853 UTC 12°S 158°E

Precipitation Signal Strength
Ku O weak Omid [Ostrong

Ka M very weak e—100km—
Core

northwest 15 km southeast

=

GMI 89 GHz Tb (K)
precip. ice scattering

0O Ka very weak precip signal above 8 km ESr—— __M‘
0O GMI 183+3 GHz Tb very cold (160-180 K)

1 * The minimum-to-maximum

range of Tb observed in the 3x3



New GPM
Zealand .
Microwave

Surface
Precipitation
Rate (mm/hr)

Liquid Solid
20 10

Sea ice
Front
GPM orbit
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Lightning
@ WWLLN B Light precip.

(~190 flashes in -
+40 minutes) HeaVy precip.
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GP» Falling Snow a s Observed b i

NASA's GPM Microwave Imager (GMI) was specifically designed to
detect falling snow. This snow event occurred March 17, 2014 and
deposited more than 7” of snow in the Washington, DC metro area.

( ou . Bottom Left: GMI retrievals of liquid rain Bottom Right: Ground measurements from
g (greens to reds indicate light to heavy rain) and NOAA’s National Mosaic & Multi-Sensor QPE
falling snow (blue shading). (CONUS 3D radar mosaic at 1km resolution).
GMI GPROF precipitation NMQ radar composite precipitation
March 17, 2014 - 04:18Z, orbit 272, GPROF version = V01D March 17, 2014 - 04:18Z
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IPWG, November 17-20, 2014 Courtesy Kummerow/Berg
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A Global View of Precipitation with a Global Team

CONUS/NOAA NMQ/Q2 (Gauge/Radar)

Canada (Radars/Gauge)
(GCPEX;2012 Snow, 2012-)

GV: A Global Effort Finland: UH/FMI Helsinki,

. Sodankyli radars, gauges
A EUgauges, radars, cwvsx;om-s:\o\: 2012 )
disdrometers, disdrometers '
gauges HyMEX (2012-)

U. lowa/Flood Center S. Korea (KMA)
IFloodsS; 2013 COTEAS ; Gauges, Radars
OLYMPEX (TBC); 2015/16 g ¢ : Japan (JAXA):
DOE ARM SGP e DS ’. 1 s —A‘“‘\ PR Radars, gauges,
MC3E2011 e P ol RN AN P e AstaT\ e isdrometers

IPHEX; 2014 ¢
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Ethiopia Austral?a Gauges, Radar
Operational

Megha -Tropiques GV Israel

Argentina ) Blue Nile
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TRMM and TMPA

TMPA is the TRMM Multi-satellite Precipitation Analysis
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RT and RP products

TMPA Version 7 provides two 3-houly data sets: near-real-time data (RT) (4-5
hrs after observation) and research quality data (RP) (approx. 1 month after,
with ground observation from GPCC). Both data have 0.25°x 0.25°
resolutions (50° N to 50° S).
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Questions

 Are RT and RP data systematically consistent from
2000 (the date RT released) to 20127

* If not, spatial distribution of the inconsistent area?



Results: Inconsistent areas
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The test statistics in these areas are quite close to the 0.05 critical level. It is useful to
focus on the areas in which the null hypothesis was rejected at a higher significance level.
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Results: RT changes relative to RP

| Blue :RT increases
| relative to RP;
| Red: RT decreases
relative to RP.




Spatial comparison by month
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IMERG

GSMaP

IMERG and GSMAP over OLYMPEX domain, Apr, 2017
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Inter annual storage variation along with
the global total reservoir capacity change
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Modeled and observed storage, Lake Nasser

160 | High Aswan Dam Reservoir Storage
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Modeled and observed storage, Kainji Reservoir

18— , , , __Kainji Dam Reservoir Storage
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Current Status of Global Reservoirs/Lakes Storage Estimate
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(last updated Dec. 2016)



Why does this matter?

For lakes and reservoirs, understanding why storage variations
are as observed requires replication of the water balance (can
also be used to “reverse engineer” reservoir operating policies.

The main terms in the water balance of lakes and reservoirs
(usually) are a) inflows, and b) releases (instream and to meet
external demand)

On a global basis, the places where we have the poorest
information about lake and reservoir storage variations
generally are places where the in situ precipitation network
also is the worst (e.g., developing countries, and high latitudes)

Remote sensing (e.g. GPM) offers one source of precipitation
data that don’t require (at least in estimates like TMPA-RT)
surface observations

An alternative source is analysis fields (or reanalysis) from
numerical weather prediction models. At this point, we don’t
know which is better (where).



