Lakes and Climate: The Role of Remote Sensing June 01-02, 2017

On the use of water color missions for lakes in 2021

Cédric G. Fichot Department of Earth and Environment

1. Past and still-ongoing water color missions and their limitations

2. New and future water color missions: pros/cons for lakes

3. Some of the challenges of measuring water color in lakes

Impacts of climate change on lake water color and quality

Impacts of climate change on lake water color and quality

Impacts of climate change on lake water color and quality

Atmospheric Correction

Satellite water color has found many application in lakes

Vertical light penetration

Chlorophyll-a and harmful algal blooms

Dissolved Organic Matter /Carbon

Dissolved Organic Carbon

Water color missions

Water color missions are optimized for the ocean

- Compromise between the different resolutions (Spatial, Temporal, Spectral)
- Linked to signal-to-noise ratio

<u>1-km</u> spatial resolution

Daily coverage (if no clouds)

Solution

<u>Multispectral</u> (several, well selected spectral bands)

Water color missions are optimized for the ocean

- Compromise between the different resolutions (Spatial, Temporal, Spectral)
- Linked to signal-to-noise ratio

Spatial resolution limitations

Limitations for use in inland or estuarine waters

300-m resolution

Temporal resolution limitations

Large freshwater cyanobacteria surface colony can develop in matters of hours

July, 23 2016

Source: Tim Moore

Spectral resolution and range limitations

Spectral resolution and range limitations

MODIS Fluorescence Line Height method Good for lower phytoplankton biomass

MERIS Maximum Chlorophyll Index

Good for higher phytoplankton biomass (red tide)

New and future Water Color Missions and Sensors

Landsat-8 and Sentinel-2

Landsat-8 Operational Land Imager (OLI)

Sentinel-2A and 2B Multi-Spectral Imager (MSI)

PROS:

- Much improved SNR compared to previous landsat missions: facilitates measurements over water
- High-spatial resolution (10-30 m) opens new applications
- SWIR bands to improve atmospheric corrections in turbid waters

CONS:

- Restricted spectral resolution limits range of applications
- Limited temporal coverage (5-day revisit time at best) for a number of applications

Impacts of a wastewater diversion on chlorophyll-a concentration in coastal waters

Sentinel-3 Ocean and Land Colour Instrument (OLCI)

<u>Sentinel 3-A:</u> launched in Feb. 2016 <u>Sentinel 3-B:</u> to be launched end of this year

- o Pushbroom, 5-camera system
- o 21 narrow spectral bands: 400 1020 nm
- o 300-m spatial resolution
- o Swath of 1270 m

21 narrow spectral bands

NASA PACE Mission

PACE = Plankton, Aerosol, Cloud, ocean Ecosystem)

2022 timeframe

- o Single detector, rotating telescope scanner (like SeaWiFS)
- o 20-degree tilt to avoid sun glint
- o Monthly lunar calibration of all science detectors
- Ground sample distance ~ 1 km² at nadir
- o <u>5 nanometer (nm) resolution from 350 to 890 nm</u>
- Plus short-wave infrared (SWIR) bands centered on: 940, 1240, 1380, 1640, 2130 & 2250 nm
- Image artifacts <0.5% at calibrated, top-of-atmosphere radiances

NASA PACE Mission

Source: PACE STR

PACE timeline

PROS:

- Good SNR
- Daily coverage (higher at higher latitudes)
- Hyperspectral!!!

CONS:

- Spatial resolution of 1 km² (limits use to large lakes)
- Daily coverage

GEOstationary Coastal and Air Pollution Events (GEO-CAPE)

- Geostationary satellite (36,000 km altitude)
- Constant coverage of Americas every 3h
- Target areas up to 1 h
- Post-2022

Resolutions

<u>Spectral:</u> UV-Vis-NIR Spectrometer Multi- or hyperspectral

Spatial: 200-300 m (potentially less)

<u>Temporal</u>: up to hourly

GEOstationary Coastal and Air Pollution Events (GEO-CAPE)

Source: Tim Moore

PROS:

- Up to hourly coverage
- Spatial resolution 200-300 m
- Hyperspectral?

CONS:

- Spatial resolution 200-300 m
- Not global

Resolutions

<u>Spectral:</u> UV-Vis-NIR Spectrometer Multi- or hyperspectral

Spatial: 200-300 m (potentially less)

<u>Temporal</u>: up to hourly

Hyperspectral InfraRed Imager (HyspIRI)

- Timeframe is post > 2025???
- Essentially a hyperspectral Landsat

Visible to short wave infrared (VSWIR: 380 nm - 2500 nm) in 10 nm contiguous bands

A multispectral imager measuring from 3 to 12 um in the mid and thermal infrared (TIR).

- 30-60 m spatial resolution
- 16-day revisit time

Challenges of doing remote sensing over inland waters

Measuring water color in lakes represent a challenge

- Very variable in size, dynamics, and range and characteristics of in-water constituents
- Very optically complex water bodies (with many independently varying in-water constituents)

Need of algorithm blending:

- Water-type specific (adaptive) algorithms
- Allows to tune optical models to specific water types
- How to define the water types

Measuring water color in lakes represent a challenge

Many other challenges and issues faced in inland waters:

- Aerosols
- Dark, highly absorbing waters
- Extremely turbid
- Bottom reflectance
- Calibration errors
- Trace gases (e.g., NO₂)
- Adjacency effects
- Sunglint
- Cloud shadows & wave facets

<u>Challenges:</u> Adjacency effects

Caused by atmospheric scattering of radiance that originates outside of the sensor element's

Mackenzie River Delta (June 24th 2016)

Landsat-8 (OLI)

<u>Challenges:</u> Adjacency effects

2015-09-01

<u>Challenges:</u> Inadequate aerosol models for inland waters

<u>Source:</u> Nima Pahlevan

<u>Challenges:</u> Inadequate aerosol models for inland waters

Standard aerosol models used for atmospheric corrections over oceans are not adequate for inland waters

Pahlevan, N., Roger, J.-C., & Ahmad, Z. (2017). Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters. *Optics express, 25*, 6015-6035

<u>Challenges:</u> Highly absorbing waters

- Extremely low reflectances SNR issue, especially when using high spatial resolution
- Makes atmospheric correction
- Changes in reflectances are not very sensitive to changes in concentration in CDOM at very high concentration

Challenges: Sunglint

<u>Challenges:</u> Cloud shadows

Belgian coastal zone / Zeebrugge

Wave facets, breaking waves

Extra slides

CubeSats?

Tilt to avoid sunglint

