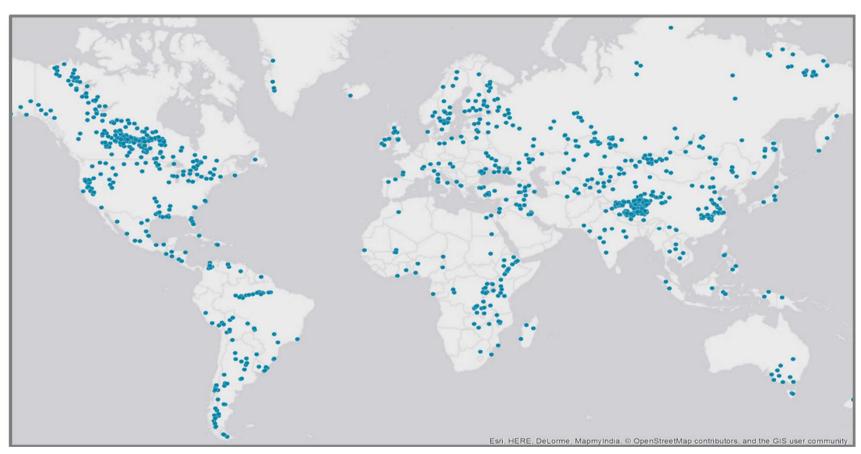


The Copernicus Inland Water Service of the European Union

Carsten Brockmann, Kerstin Stelzer, Stefan Simis, Steve Groom



Broadening the Portfolio: Lake Water Theme

- Copernicus User Forum:
 - "The land monitoring service, which is to provide information on land use and land cover, cryosphere, climate change and biogeophysical variables, including their dynamics, in support of the global-to-local environmental monitoring of biodiversity, soil, inland and coastal waters, forests and vegetation, and natural resources,…"
- New line of services starting in 2016/2017
 - Water Theme
 - Water bodies & Coastal erosion
 - Lake Water Quality
 - Water Level
- Ramp-up phase, integration of new Sentinels, evolution contracts
 - Phasing depending on Technical Readiness Level

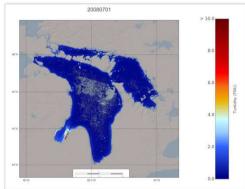
Globally distributed Lakes

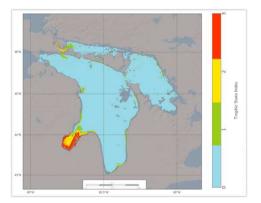
• 1000 lakes, many different to GloboLakes

Lake Water Products

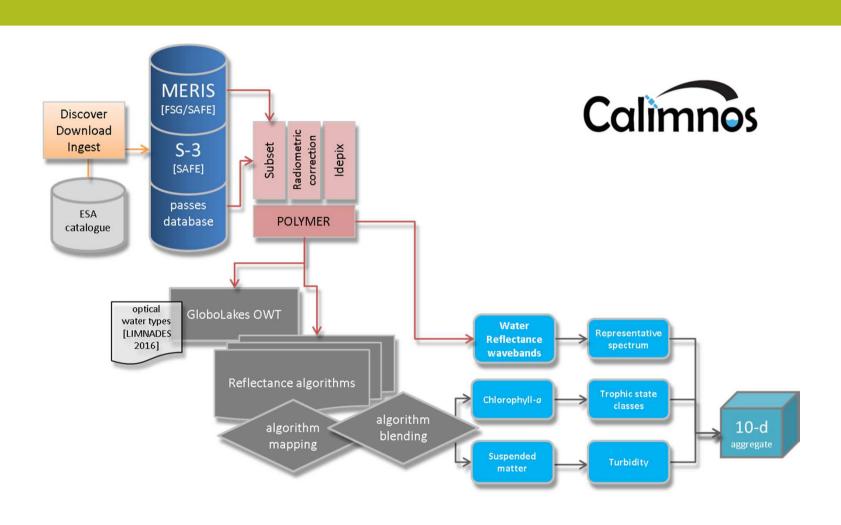
Parameters:

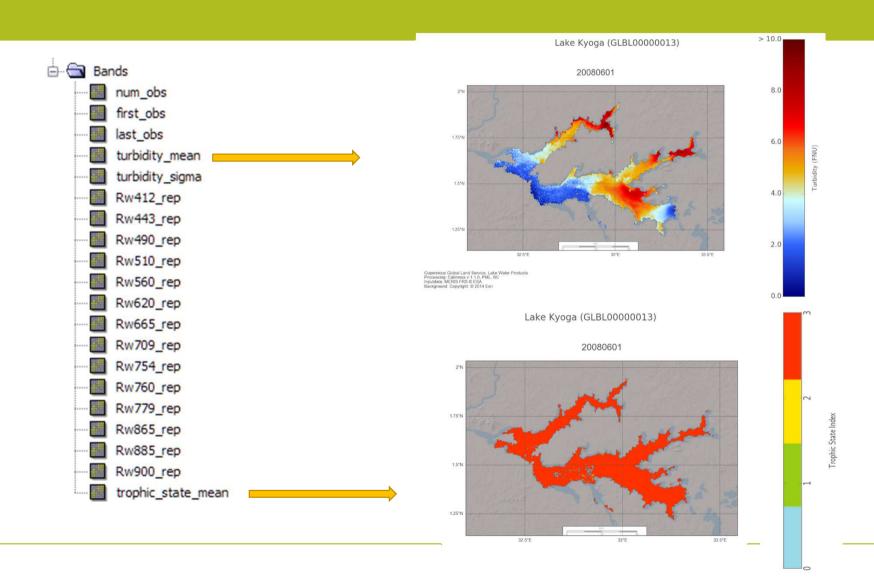
- Lake Surface Temperature (LSWT)
- Lake Surface Reflectances (LSR)
- Turbidity (TUR)
- Trophic State Index (TSI)


• Inputs:


- MERIS (REPROCESSING 300m, 1km)
- OLCI (NRT 300m, 1km)
- S-2 MSI (100m)

• Outputs:

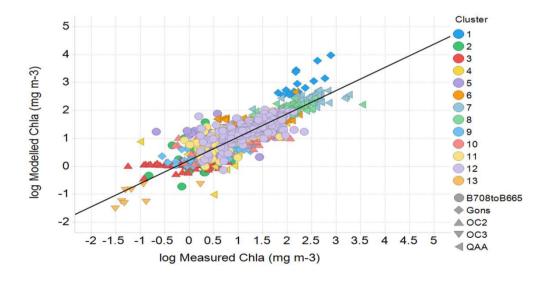

• 10 day averages




Processing Chain

Products & Metadata

Products & Metadata

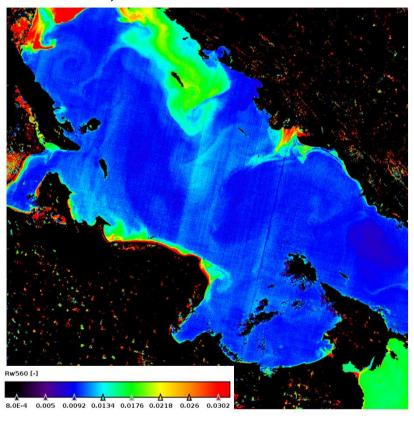

Products & Metadata

10				
⊟ Bands				
	num_obs			
	first_obs			
	last_obs			
	turbidity_mean			
	turbidity_sigma			
	Rw412_rep			
	Rw443_rep			
	Rw490_rep			
	Rw510_rep			
	Rw560_rep			
	Rw620_rep			
	Rw665_rep			
	Rw709_rep			
	Rw754_rep			
	Rw760_rep			
	Rw779_rep			
	Rw865_rep			
	Rw885_rep			
	Rw900_rep			
	trophic_state_mean			

Name	Value Type
Conventions	CF-1.4 ascii
TileSize	64:64 ascii
product_type	CF-1.4 ascii
start_date	26-JUL-2003 07:46:43.301153 ascii
stop_date	26-JUL-2003 07:46:43.301153 ascii
processor	Calimnos ascii
processorVersion	1.1.0 ascii
processingCentre	Plymouth Marine Laboratory ascii
project	Copernicus Global Land Service – Lake Water ascii
contact	calimnos-support@pml.ac.uk ascii
processingTime	2017-04-13T17:29:17.887492 ascii
trackingID	36d1913f-a3df-4989-bb54-a0d9747c2ef4 ascii
processingStage	L3_Aggregation ascii
aggregationPeriod	10D ascii
title	Calimnos L3 Aggregated product ascii
auto_grouping	radiance:l1b:ide:poly:rgb:labor:mph:blended:POLY:RGB:BLE ascii
Name	Value Type
wavelength	490 float64
long_name	reflectance at 490 nm in the most representative spectrum cascii
standard_name	fully_normalized_water_leaving_reflectance_at_490nm_mos ascii
coordinates	lat lon ascii
_FillValue	9.96921E36 float32
_ChunkSize.1	1 int32
_ChunkSize.2	677 int32
_ChunkSize.3	454 int32

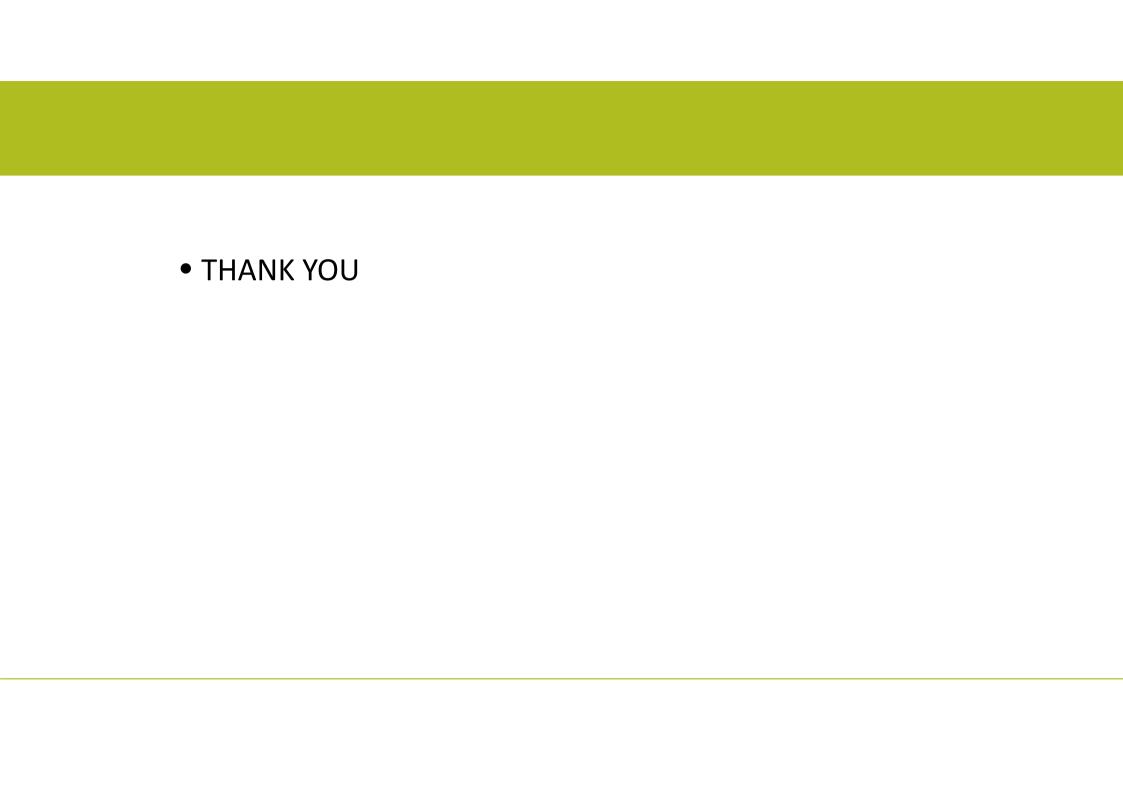
Validation

- Visual inspection
 - Plausibility of spatial patterns → mapping
 - Plausibility of temporal patterns → time series
 - Identification of Artefacts → mapping
 - Assessment of values in known lakes
- Comparison with in situ data
 - In situ data sources LIMNADES
 - US data bases for lake assessment (EPA)
 - National lake monitoring programs

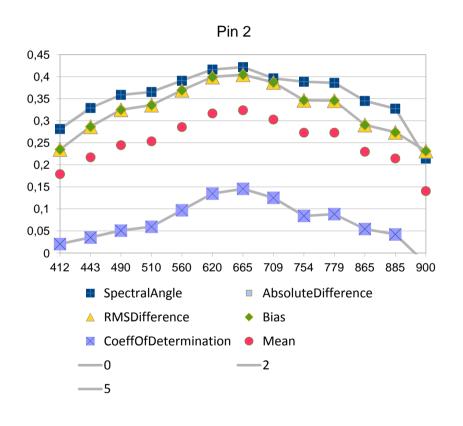


In situ data: LIMNADES, Globolakes

Evolution: Increasing spatial resolution to 100m


- Sentinel 2 MSI as data source
- HYGEOS Polymer for AC
- In-water processing unchanged
- Flagging of S-2/MSI products:
 - Integrate a land mask
 - Integrate a cloud mask and evaluate the possibility of integration of a cloud shadow mask
 - Implement specific flags if necessary

S-2/MSI Polymer processing Lake Titicaca, 2016-03-18



Status and Evolution

- Archive Processing MERIS completed, public release June 2017
- Integration of OLCI ongoing;
 - NRT service starting October 2017
- Evolution workpackage to increase spatial resolution
 - 100m products with Sentinel-2
- Improvement of the scientific quality of product
 - POLYMER for Sentinel and turbid waters -> improve R_w
 - Develop end-to-end chain for turbidity (now based on TSM)
- Improvement of product time span
 - 10 years of MERIS gives good coverage
 - OLCI reprocessing from beginning of mission

Selection of representative spectrum

Lake Water: Trophic State (TS)

Trophic classification	Trophic State Index	Chlorophyll-a range	Medium resolution mapping	High resolution mapping
Oligotrophic	0 10 20 30	0.04 0.12 0.34 0.94	Absence of Red/NIR signal and Chla fluorescence signature mapped to oligotrophic class. Better specification to TSI possible in lakes with low humic content.	No Red/NIR signal defaults to oligotrophic class without further specification
Mesotrophic	40	2.6		Classified as mesotrophic if lake is sufficiently turbid to derive NIR/red signal
Eutrophic Hyper- eutrophic	50 60 70 80 90 100	6.4 20 56 154 427 1183	Chla from global lake processors mapped to TSI and class	Chla from NIR/red ratio algorithms mapped to TSI