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Abstract

Reflectance measurements acquired with the spaceborne POLDER instrument are used to analyze the variability of land surface

directional signatures as a function of vegetation cover type. The reflectance directional signatures are quantified by the three parameters of a

modified version of the Ross–Li reflectance model. The variability of the estimated parameters with respect to the seven MODIS biome

classes was found to be higher within the classes than between classes, with the exception of the desert targets that show more isotropic

reflectances. A limited number of standard BRDFs (typically 5 in the red and near infrared) capture most of the variability of the directional

reflectance measurements, supporting the idea that different land surfaces have similar directional signatures. Over vegetation targets, they

are characterized by a strong increase toward backscattering and much smaller variations in forward directions. The results express the

diversity in structural situations within a given biome class and indicate that, at the resolution of the POLDER sensor, i.e. a few kilometers,

the BRDF contains little information on the dominant vegetation type. We show that standard directional signatures may be used to correct

the reflectance measurements for directional effects with an RMS error on the order of 0.011 in the red and 0.015 in the near infrared.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Reflectance measurements in the visible and near infrared

(IR) spectral ranges are commonly used to monitor land-

surfaces, including vegetation canopies, for quantifying

changes in the Earth system or modeling its functioning.

Classical biogeophysical variables that are estimated from the

remote sensing data include the leaf area index (LAI) or the

fraction of absorbed photosynthetically active radiation

(fAPAR). A major difficulty for quantitative estimation of

vegetation and soil characteristics from the reflectance

measurements results from their anisotropy. For a given

target, the reflectance varies as a function of sun and sensor

geometry. The use of reflectance ratios lessens the anisotropic

effects, as compared to individual measurements, because the

directional signatures are similar in the various spectral

bands. This explains in part the success of indices such as the

NDVI (normalized difference vegetation index), up to recent
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years, for understanding the functioning and dynamics of the

biosphere (Braswell et al., 1997; Maisongrande et al., 1995;

Myneni et al., 1997). Simple vegetation indices however

cannot be used for an accurate quantification of vegetation

cover and photosynthetic activity because they do not directly

relate to such intrinsic vegetation characteristics. There is a

need to fully use the individual reflectance measurements,

which requires a correction of their directional variations

(Leroy & Roujean, 1994). Traditionally, time series of

satellite measurements have been used to evaluate and correct

the anisotropy (Cihlar et al., 1997; d’Entremont et al., 1999;

Duchemin, 1999; Wu et al., 1995) although with a very

limited sampling of the BRDF (Bidirectional Reflectance

Distribution Function). Such sampling provided by cross-

track scanners such as AVHRR (Advanced Very High

Resolution Radiometer) or VEGETATION is not sufficient

to properly assess the anisotropy pattern at the global scale.

On the other hand, theoretical studies have indicated that

the BRDF, that quantifies the angular distribution of the

reflected radiance, carries specific information on the

landsurfaces (Asner, 2000) such as the spatial distribution
ent 98 (2005) 80 – 95
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of the scattering elements (Diner et al., 1999; Gao et al.,

2003; Gerstl et al., 1986), LAI, fAPAR, fractional cover,

clumping, or chlorophyll content (Bacour et al., 2002; Chen

et al., 2003; Gemmell, 2000; Lacaze et al., 2002). Also, the

reflectance directional signatures provide additional infor-

mation to the spectral signatures to decouple the effects of

biochemical and structural parameters. Integration of multi-

angle observations is also maturing for improving character-

ization of surface roughness (Marticorena et al., 2004),

landcover types (Bicheron et al., 1997; Lovell & Graetz,

2002; Zhang et al., 2002) and heterogeneity (Pinty et al.,

2002). Nevertheless, whether they concern quantitative

(biophysical variable estimation) or qualitative (land cover

classification) characterizations of the Earth surface, most of

these studies use the directional information to supplement

the spectral dimension of the measurements. It is not clear

whether there is a specific information provided by the

directional signature.

Still, the angular variability of vegetation and soil

reflectance has long been investigated with radiative transfer

models, supported by field-based (Deering & Leone, 1986;

Kimes, 1983; Kriebel, 1977; Sandmeier, 1999) and labo-

ratory measurements (Briottet et al., 2004; Liang et al.,

1997; Solheim et al., 2000). More recently, airborne sensing

data (Camacho de Coca et al., 2004; Leroy & Bréon, 1996;

Tsay et al., 1998) have provided a larger – but still limited

– sample of directional signatures. Complementarily to

samples of reflectance directional signatures gained by

temporal compositing over short time periods of single-

angle images acquired by AVHRR or MODIS (MODerate

resolution Imaging Spectrometer), complete samples of land

surface BRDFs are provided by spaceborne measurements

of POLDER (POLarisation and Directionality of the Earth’s

Reflectance; Bicheron & Leroy, 2000; Deschamps et al.,

1994) and MISR (Multiangle Imaging SpectroRadiometer;

Diner et al., 1999), that measure near – simultaneously the

reflectance of a given Earth target from various viewing

directions.

The present study analyzes the unrivaled database of

BRDF measurements acquired by the POLDER spaceborne

instrument. The analysis of the variability of the directional

signature as a function of the vegetation coverage is under-

taken to assess whether the BRDF can be interpreted as a

specific signature of the underlying surface. The data analysis

is made possible by reducing the BRDF dimensionality with a

kernel-driven radiative transfer model. Finally, we investigate

the possibility of using a biome dependent directional model

to normalize reflectance measurements.
2. Materials and methods

2.1. POLDER reflectance database

The reflectance data were acquired during the 8 months

of the POLDER-1 mission. A single path provides up to 14
measurements, acquired at a spatial resolution of about 6

km, from various directions with view zenith angles up to

70-. Although POLDER provides measurements in 8

spectral bands, we mostly analyze here those at 670 and

865 nm representative of the red and near IR. The

measurements have been geo-coded, calibrated, cloud

screened and partially corrected for atmospheric trans-

mission and scattering (Bréon & Colzy, 1999; Hautecoeur

& Leroy, 1998; Leroy et al., 1997). The cloud screening

relies on three tests using (1) derivation of the pressure of

the main reflectors (surface or clouds) based on the ratio of

the channels at 763 and 765 nm in the oxygen absorption

band, (2) polarized reflectance that exhibits very specific

values for liquid phase clouds at scattering angles close to

140-, (3) a spatially variable threshold on the 443 nm

reflectance and its angular variation. Cloud free pixels are

then corrected from absorbing gases (O3, O2, and H2O) and

stratospheric aerosols. Oxygen and water vapor amounts are

derived from a differential absorption technique using,

respectively the measurements at 763 and 765 nm, and at

865 and 910 nm; the ozone correction uses TOMS/ADEOS

data. For the data used in this paper, there is no correction

for tropospheric aerosols.

A monthly composite of the various satellite overpasses

provides a very dense sampling of the BRDF for view

angles up to 70-, with small variations of the sun angle

(roughly 10-). For natural targets, the BRDF is not a

measurable quantity stricto sensu as it requires perfectly

collimated beams of illumination and observation, while the

sunlight is partly diffuse and the measurements involve

conical geometries. Satellite measurements therefore pro-

vide an approximation of the BRDF, from few observation

geometries. The BRDF error increases with atmospheric

scattering (i.e. more diffuse radiation) so that significant

aerosol load must be avoided. Besides, the approximation is

better justified in the near IR than in the visible as the

scattering optical thickness is then smaller. Although our

satellite measurements do not provide a sampling of the

BRDF per se, we use this terminology in the following as it

is widely used for similar applications.

The POLDER dataset of this study expands an earlier

version discussed in (Bicheron & Leroy, 2000): 22989

different sites were selected to sample the Earth biomes

based on criteria regarding to the quality of measurements

(smooth variability over the acquisition period) and their

directional coverage (uniform distribution over the hemi-

sphere). Significant aerosol loads have a strong impact on

the lower wavelength measurements (443 and 565 nm in

particular). Because of the variability of the aerosol load,

targets that are affected by aerosol events show a noisy

directional diagram (based on more than 10 different

satellite overpasses). They are removed from the further

analysis based on the smoothness threshold on the observed

directional signatures, which significantly lessens the

aerosol impact in our results. There is nevertheless some

remaining aerosol contamination in the database, which is
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expected to be more significant in the visible channels than

in the near infrared. Another source of noise in the data is

the evolution of the targets during the period of synthesis.

The database was processed and made available by Medias

France (Lacaze, 2003).

2.2. Semi-empirical BRDF model

The large number of directional measurements available

for each site, with a large range of illumination geometries,

precludes an easy quantitative interpretation of the informa-

tional content of the directional signatures. The directional

reflectance measurements for each spectral band were

therefore fitted by a three-parameter semi-empirical model

(Maignan et al., 2004):

R hs; hv;/ð Þ ¼ k0 þ k1IF1 hs; hv;/ð Þ þ k2IF2 hs; hv;/ð Þ ð1Þ

The Fi functions, also referred to as kernels, model

theoretical directional signatures R(hs,hv,/) in the ad hoc

observation geometries (defined by the solar zenith hs, view
zenith hv, and relative azimuth /, angles). Their relative

contribution to the observed reflectance is weighted by the

corresponding ki parameter to estimate. k0 corresponds to

the isotropic contribution of the surface, and may include

the contribution from multiple scattering, which is more

isotropic than the single scattered one.

The F1 kernel is based on the analytical representation,

according to geometric optic considerations, of the reflec-

tance by a flat Lambertian surface covered with randomly

distributed spheroids having the same optical properties as

the soil (Lucht et al., 2000); it is often referred to as the

geometric kernel. F1 is typically bell-shaped (higher nadir

reflectance compared to off-nadir in the perpendicular plane

of observation, i.e. for relative azimuth angle of 90- and

270-). In the principal plane, the reflectance increases

smoothly from oblique directions to backscattering (Fig.
Fig. 1. Values of the F1 and F2 kernels in the principal plane, for four values of t

increasing hs values. The new implementation of the F2 kernel (solid lines) accou
1a). The F2 kernel models the reflectance of a theoretical

turbid vegetation canopy with high leaf density in the single

scattering approximation; it is also referred to as the

volumetric kernel. The original formulation (Ross, 1981)

was modified to account for the hot spot effect within turbid

media (Maignan et al., 2004). The directional shape of F2

resembles an upturned bowl in the perpendicular plane. In

the principal plane, the F2 kernel shows a strong and narrow

reflectance increase towards backscattering (Fig. 1b). The

hot spot half width parameter was fixed here to 1.5-,
corresponding to the mean value estimated for most of the

Earth’s targets, because of its little variability at the global

scale (Bréon et al., 2002). Note that this should have only a

marginal impact on the retrieved values of the model

parameters as the hot spot directions are rarely sampled in

the BRDF database.

Although the F1 and F2 functions are based on physical

considerations, they are strong approximations in the

radiative modelling. Besides, there is no justification for

the linear compositing of the two functions, in particular in

the case of a thin vegetation canopy overlying a rough

surface. Thus, one should refrain from too much physical

interpretations of the ki inverted parameters. Nevertheless,

this very simple model has shown a surprising capability at

reproducing the measured directional signatures of the main

landsurfaces (with the exception of ice and snow covers)

with high accuracy (Maignan et al., 2004), significantly

better than several others analytical models. In fact, the

measurement-fit difference (typically of the order of 0.01 or

less) has a noise-like directional pattern: it does not show

any specific pattern indicating the inadequacy of the model

to reproduce the measurements under particular observation

geometries. Thus, we argue that the three parameters contain

most of the reflectance directional information for view

angles of less than 60-, i.e. those accessible to most Earth

remote sensing instruments.
he solar zenith angle (0-, 20-, 40- and 60-). Darkening lines correspond to

nting for the hot spot effect is compared to the original one (dashed lines).



Table 1

Distribution of the selected sites within the seven biome classes

Grasses and cereal crops Shrubs Broadleaf crops Savannas Broadleaf forests Needleleaf forests Unvegetated areas Total

Number of sites 676 1362 139 497 190 114 533 3511

Percentage 19.2% 38.8% 3.9% 14.2% 5.4% 3.3% 15.2% 100%
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2.3. Data processing

From the original BRDF database, we selected targets

with more than 120 observations in each spectral bands to

ensure reliable estimates, and retained only those with a

view angle of 60- or less, because more oblique views are

increasingly affected by atmospheric scattering. The reflec-

tance model was inverted against the measurements using a

standard least square procedure. Any variation of the target

reflectance within the one-month period of synthesis is not

explicitly accounted for. Such variation, together with cloud

contamination and atmospheric effects not properly cor-

rected for, results in noise in the data that cannot be

reproduced by the BRDF model. Thus, the targets with a

measurement-model correlation coefficient less than 0.75 at

670 nm or 0.85 at 865 nm were discarded. The signal to

noise is generally lower in the visible due to a combination

of lower surface reflectances and larger atmospheric effects.

For further analysis, a vegetation class was assigned to

the targets. The classification is based on MODIS results

that partitions land surfaces into 7 biome types at a spatial

resolution of 1 km (Knyazikhin et al., 1999; Zhang et al.,

2002): (1) grasses and cereal crops, (2) shrubs, (3) broadleaf

crops, (4) savannas, (5) broadleaf forests, (6) needleleaf

forests, (7) unvegetated areas—deserts. An 11�11 km2 (or

121 pixels) region centered on the POLDER targets (of

nominal size 6�6 km2) was used to identify the dominant

biome and the spatial variability. Only those targets that

show a dominant cover (i.e. more than 80% fractional

cover) are kept for further analysis so as to ensure a thematic

homogeneity and to prevent potential misclassification

problems. Note that a fractional cover of 80% roughly

corresponds to 97 pixels among 121 that are affixed the

same biome type. In addition, snow covered pixels,

identified by a somewhat larger reflectance in the visible

than in the near IR and leading to high measurement-fit

differences, were rejected.

After this stringent quality control procedure, 3511 out of

22989 sites are kept for further analysis, the distribution of

which is given in Table 1.
3. Analysis of the directional signature variability

3.1. Examples of biome BRDFs

Fig. 2 shows directional measurements, in the principal

plane, of a few selected targets representative of the 7 biome

types. The remarkable quality of the fit by the semi-
empirical model is typical of the results obtained on the

whole of the dataset. The BRDF samples appear fairly

similar between the biomes. The main noticeable differences

reside in the spectral dimension of reflectance, i.e. relate to

the differences between the reflectance levels measured in

the four wavelengths. Accordingly, the ‘‘deserts’’ class is

typical of soil backgrounds with similar reflectance levels in

the red and near infrared. Conversely, ‘‘broadleaf forests’’

and ‘‘needleleaf forests’’, and in some extent ‘‘savannas’’,

present an important gap of their optical properties between

the visible and near infrared domains, as expected for dense

vegetation covers. The ‘‘grasses and cereal crops’’,

‘‘shrubs’’, and ‘‘broadleaf crops’’ sites, rather correspond

to sparse vegetated areas, intermediate between the two

former cases.

In the following, the study is restricted to the red (670

nm) and near infrared (865 nm) domains commonly used to

characterize vegetation covers through the use of NDVI.

3.2. Distribution of the estimated parameters

The distribution characteristics of the retrieved k i
parameters at 670 and 865 nm are given in Table 2 and

Fig. 3. Their shape and the corresponding extremum values

agree with those found for the coefficients of the Roujean

model, inverted from POLDER measurements over Aus-

tralia (Lovell & Graetz, 2002). The wider distribution

observed for k0 in the red than in the near infrared traduces

the higher variability of the reflectance measurements

because of the larger contrast between the optical properties

of absorbing leaves and soils. k2 values are generally larger

in the near infrared than in the visible, while they are of

similar magnitude for k1 in the two wavebands. k2 plays the

role of the leaf reflectance in the radiative transfer

formulation; its spectral dependency can be interpreted by

the increase of radiation scattering by leaf layers from red to

near infrared due to the vanishing of absorption by

chlorophylls. In the following, k1 and k2 inverted for each

site and normalized by k0 are used to quantify the

directional variation of the reflectance, with respect to the

isotropic component, and are therefore considered as the

directional parameters:

R hs; hv;/ð Þ ¼ k0 1þ k1

k0
IF1 hs; hv;/ð Þ þ k2

k0
IF2 hs; hv;/ð Þ

� �

ð2Þ

In order to assess for the robustness of the estimates, we

analyzed 503 sites (out of 3511) that were sampled at



Fig. 2. Representative bidirectional reflectance signatures of the seven biome types in the principal plane at 443, 565, 670 and 865 nm, for a solar zenith angle

close to 42-. The lines show the model BRDF after inversion of its parameters using all reflectance measurements. The symbols represent the error of fit to the

measurements acquired around the principal plane (T5-), plus the corresponding reflectances simulated in the principal plane.
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different months. The temporal variation of the retrieved

parameters is shown in Fig. 4 where, for each site, the

parameters estimated at a given acquisition period are

plotted against the values retrieved at another one. For each

case, the root mean square error and correlation coefficient

quantify the dispersion of the estimates around the one-to-

one line. This dispersion is due to structural changes of the

corresponding surfaces during the vegetative cycle together

with uncertainties in the estimates resulting both from the

measurement errors and the inadequacy of the model to
Table 2

Statistics on the estimated values of the Ross–Li model parameters at 670

and 865 nm: minimum, mean (in italic), standard deviation (in brackets),

and maximum, values

670 nm 865 nm

k0 0.003 0.159 (0.082) 0.450 0.128 0.264 (0.060) 0.499

k1 �0.058 0.023 (0.018) 0.099 �0.062 0.027 (0.022) 0.135

k2 �0.297 0.152 (0.101) 0.633 �0.063 0.363 (0.135) 1.040
reproduce reality. The isotropic parameter – k0 – appears to

be the most robust and stable in time. The higher variance

found for k1 /k0 and k2 /k0 can be related to an higher

sensitivity to temporal variations both in leaf amount and

sun zenith angle, but also to estimation instabilities because

of compensation effects between the kernels (Gao et al.,

2003; Lovell & Graetz, 2002).

Indeed, k1 and k2 have been reported to be not strictly

independent of one another because the corresponding

functions F1 and F2 are somewhat correlated. This may

explain the few negative values obtained for the directional

parameters k1 /k0 and k2 /k0. They may also arise from

reflective properties of the observed surface not accounted

for by the simple physics of the model. Negative k2 values

translate to the total BRDF by an ‘‘anti-hot spot’’ effect, i.e.

a sharp decrease of the reflectance in the retro-solar

direction. This occurs when no measurements are available

around backscattering to constrain the model inversion.

They concern only 4% and less than 0.1% of the sites (out



Fig. 3. Histograms of the model parameter estimates (probability density functions in percentage for ranges of variation of the parameter values discretized into

50 bins) at 670 (gray) and 865 (black) nm.
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of 3511) at 670 and 865 nm, respectively. Negative k1
values do not impact the BRDF in such a manifest manner;

10% of the sites are concerned at both wavelength. We

chose to keep the corresponding sites in the following

because the negative parameters, even if considered as

nonphysical, do not affect the quality of fit in the directions

of observation and will impact insignificantly the analysis.

Moreover neither dependency with the biome type nor

potential contamination by snow or cloud was detected.

The temporal stability of the k0 estimates suggests a

limited variation of the surface reflectance. We have thus
Fig. 4. Scatterplots of the parameter estimates for the sites sampled during differ

correlation coefficient (R) are shown. a =0.066 at 670 nm and a =0.088 at 865 n
postulated that the higher dispersion around the one-to-one

line for the directional parameters (Fig. 4) is the result of

instabilities in the inversion due to correlations between F1

and F2. Consequently, we have investigated the potentiality

of determining a more robust directional parameter for

characterizing the surface anisotropy, which reduces the

compensations between k1 /k0 and k2 /k0. It is defined as a

linear combination of these, of the form (k1+a *k2) /k0. The
empirical a coefficient is tuned so as to maximize the

correlation between the values estimated at different

acquisition periods. With a varying between �1 and 1,
ent time intervals. For each case, the root mean square error (RMSE) and

m.
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the variation intervals of the correlation coefficient range

from [0.60; 0.92] in the red and [0.69; 0.93] in the near IR,

the maximum being reached for a of 0.066 and 0.088,

respectively. This way, the correlation coefficients for this

novel directional parameter are similar to those found for k0
in both wavelengths. This finding clearly demonstrates that

correlations between F1 and F2 leads to some noise in k1
and k2 retrieval, that can be reduced by use of a linear

combination between the two parameters. In the following,

its relevance is evaluated for discriminating the biomes on

the basis of their directional signatures.

The relation of the ki coefficients with the biome type is

examined in Fig. 5. The dependency of k0 with the biome

type is consistent with previous observations (Leroy &

Roujean, 1994) according to which that coefficient repre-

sents the physical evolution of the surface. The inter-class

variability is larger in the red, and is coherent with the

expected relative proportion of leaves per biome, consider-

ing the contrast between the optical properties of leaves and

soils. For dense canopies (broadleaf and needleleaf forests),

the range of variation is narrow around a low mean value,

traducing high absorption of the incident radiation by a large

amount of green leaves. For sparser canopies, the minimum

value of the variation interval changes only slightly while

the maximum value (and consequently the spectrum of k0
values) increases, together with the contribution of the

background to the reflectance. Savannas and broadleaf crops

in one hand, and grasses and cereal crops and shrubs in

another hand, exhibit similar features. Such broad ranges of

variation reveal very different vegetation situations and

growth stages within a given biome type. The unvegetated

class stands apart with higher values of the isotropic

component due to higher reflectance values for soils in the
Fig. 5. Density of the k i estimates within their range of variation as a function of t

grasses and cereal crops, (2) shrubs, (3) broadleaf crops, (4) savannas, (5) broadle

histogram where cells darkens with the population density. Extreme values of k1 /k
red. The differences between the ranges of variation of k0
are smoothed out in the near infrared. This is likely due to

the reduced contrast between the optical properties of soil

background and leaf layers, and to higher contribution of the

multiple scattering, more isotropic than the single scattered

radiation. Needleleaf forests are however an exception with

a narrow range of lower k0 values. This result agrees with

the lower reflectances observed for needle leaves that,

combined to a high clumpiness, translate to increased

absorption efficiencies at the canopy level in the near IR

(Rock et al., 1994; Williams, 1991). The higher variability

of the k0 values within the classes than between them

precludes the discrimination of the different vegetation

types on that basis alone.

Inspection of the directional coefficients does not

enlighten much on that aspect as, for most cases, they also

present a variability intra-class superior to that inter-class at

both wavelengths. Broadleaf and needleleaf forests however

depart with globally higher range of variation of k2 /k0 at

670 nm and of the k1 /k0 parameter. The lowest values of

k2 /k0 in the red are obtained for shrublands and deserts

(unvegetated class) where the vegetation cover is sparse.

(k1+a *k2) /k0 exhibit globally larger mean values for

forests, while deserts present the largest range of variation

in the near infrared, spanning from zero up to a maximum

value close to that of forests.

Because F1 and F2 have similar directional behaviour

with however different range of variations, the sole analysis

of the joint values of k1 /k0 and k2 /k0 does not enable to

determine which of the scattering (surface-geometric or

volumetric) regime dominates. This can however be

appraised regarding to the shape of the BRDF in the

perpendicular plane of observation, because bell-shaped
he biome type, in the red and near infrared. The biomes considered are: (1)

af forests, (6) needleleaf forests, and (7) deserts. Each bar corresponds to an

0 and k2 /k0 that are underrepresented were discarded to increase readability.
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BRDFs are determined by prevailing surface-scattering

effects (F1 function, see Fig. 1) while F2 predicts direc-

tional reflectance variations of the form of an upturned

bowl. The ratio of the nadir reflectance to that simulated at

hv=60- in the perpendicular plane and for an average solar

zenith angle of 40-, q60 /q0, is used to quantify the origin of

the anisotropy: q60 /q0<0.95 (conversely, q60 /q0>1.05)

corresponds to bell-shaped (bowl-shaped) anisotropy pat-

terns. The proportion of ‘‘bell-shaped’’ sites (51%) comes

out to be larger than that of bowl-shaped ones (15%) in the

red. This difference is reduced in the near infrared where

19% of the sites are bell-shaped and 22% are bowl-shaped.

The dispersion of the q60 /q0 values was similar to that

found for the directional parameters and does not allow to

discriminate between different vegetation types. The results

do not allow to confirm the hypothesis that bowl- and bell-

shaped anisotropy patterns in the red are signatures of the

surface heterogeneity (Pinty et al., 2002). According to this

theory, homogeneous surfaces, either plant canopies or bare

soils, lead to mostly bowl-shaped BRDFs, while bell-shaped

BRDFs tend to occur for heterogeneous landscapes. The

important proportion of bell-shapes situations at the coarse

spatial resolution of POLDER seems to indicate that the

bowl-shape vs. bell-shape anisotropy feature is not a reliable

information to detect surface heterogeneity. As a matter of

fact, at such spatial resolution, the targets are expected to be

more thematically homogeneous than at finer scales

(Garrigues et al., submitted for publication; Pinty et al.,

2002).
Fig. 6. Convex hulls of the density distributions of the parameters values for each

nm. Bottom: Relation between the different parameters at 865 nm. Each contour e

The number of sites used to build the convex hulls are given in brackets.
3.3. Biome discernability

The biome discernability is examined in Fig. 6 (top) with

respect to the spectral dependency of the retrieved param-

eters. The contour plots represent the convex hulls of the

density distributions that encompasses 68% of the data; they

correspond to those departing from the mean from, at the

maximum, the value of one Gaussian standard deviation.

The contour plot of k0(670 nm) versus k0(865 nm)

resembles a typical red against near infrared reflectance

diagram commonly used in remote sensing to discriminate

vegetation covers from bare soils. Because the differences in

reflectance levels between these two wavelengths essen-

tially relates to the leaf optical properties and their amount,

the location of a point in this bidimensional spectral space

therefore informs on the amount of photosynthetically active

vegetation. Consequently, the biomes corresponding to the

denser vegetation types, broadleaf and needleleaf forests,

appear distinctly on the left of the diagram while the

unvegetated sites scatter along the one to one line. The other

biomes are distributed in between these extreme cases – the

sparser the vegetation is, the closer to the soil line it gets –

with a noticeable overlapping of the convex hulls. The

spectral hulls of the various biome types are not sufficiently

distinct from one another – even though they are corrected

from the directional effects – to identify them accurately on

that basis alone. We here confirm the results of previous

studies (Zhang et al., 2002). Unfortunately, it appears that

the directional information (the normalized k1 and k2
biome type. Top: Comparison between the values estimated at 670 and 865

ncompasses 68% of the most probable estimated values for a given biome.
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coefficients) is not more valuable as the confusion between

hulls is even larger. The observed dispersion of the hulls

enforced the previous results of Fig. 5. The unvegetated class

stands aside with values of k1 /k0 and k2 /k0 highly correlated

between 670 and 865 nm (with correlation coefficients,

respectively of 0.96 and 0.86), because of similar optical

properties at both wavelengths. Estimation errors or com-

pensation effects between the kernels alone cannot explain

such important overlapping of the convex hulls. Indeed, the

use of the linear combination between k1 /k0 and k2 /k0
(which was shown to be more robust) produces a large

overlapping. (k1+a *k2) /k0 presents a rather weak spectral

dependency. This may indicate that that observed for k1 /k0
and k2 /k0 taken individually (Fig. 6) is mainly an artifact

resulting from the above mentioned compensation errors.

The relations between the spectral and directional

parameters are shown in Fig. 6 (bottom). The spectral

information is here reduced to the normalized difference

between k0(865) and k0(670), (k0
865�k0

670) / (k0
865+k0

670).

Again, it appears that the respective signature of the biomes

is better discriminated in the spectral space than based on

the directional dimension.

The perusal of the convex hulls in the bidimensional

parameter spaces reveals only slight discernability between

the 7 biomes considered in this study. A more quantitative

analysis was performed by means of a simple classification

algorithm in order to partition the data space into seven

clusters of similar characteristics (routine CLUSTER of the

Interactive Data Language). Two cases were considered

(Table 3): accounting for the spectral information only and

for the directional information in the near infrared only.

The classification based on the normalized reflectance

estimated in the red and near infrared recognizes satisfactorily
Table 3

Results of the classification exercise accounting for (a) the spectral

information only (top), (b) the directional information only (bottom)

Information Classes Biomes

1 2 3 4 5 6 7

k0
670 k0

865 A1 0 0 0 0 0 0 37

B1 5 17 0 0 0 0 49

C1 43 29 6 0 0 0 14

D1 48 53 7 2 0 0 0

E1 0 0 6 2 100 0 0

F1 0 1 0 18 0 100 0

G1 4 0 81 78 0 0 0

k1
865/k0

865 k2
865/k0

865 A2 3 1 0 0 0 0 55

B2 0 20 0 1 2 0 35

C2 0 27 0 4 84 55 2

D2 37 0 23 4 0 0 1

E2 24 0 6 10 0 0 0

F2 17 19 45 50 13 40 0

G2 19 33 26 31 1 5 7

Per biome type, the percentage of sites affixed to each class is given, such

that the column sum is equal to 100%. The biomes considered are: (1)

grasses and cereal crops, (2) shrubs, (3) broadleaf crops, (4) savannas, (5)

broadleaf forests, (6) needleleaf forests, and (7) deserts.
the predefined forest biomes (Table 3 top): for each, the

whole of the corresponding sites are affixed to a single class

(E1 and F1). This confirms that, except little contamination

from other biomes, broadleaf and needleaf forests have very

specific spectral properties. Similarly, 86% of the deserts is

well-identified (classes A1 and B1). Grasses/cereal crops and

shrublands on the one hand, and broadleaf crops and

savannas on the other hand, appear to have similar spectral

features. Thus, the classification performed on the basis of the

spectral information alone separates the data space into 5

classes of similar red-near infrared signatures. The consis-

tency with the original MODIS biome classification is not

surprising as its definition principally relies on the spectral

information; part of the discrepancies are explained by the

accounting for the temporal evolution of the spectral proper-

ties of the sites in the MODIS classification.

The classification based on the directional parameters in

the near infrared results in an higher repartition of the sites

within each of the seven classes (Table 3 bottom). Deserts

appear better defined in this bidimensional space than the

other biomes, as two classes (A2 and B2) encompasses 90%

of the corresponding sites. They are mixed with few

shrubland sites (21%), where the sparseness favors the

influence of the background. Most of the broadleaf (84%)

and needleleaf (55%) targets are also included within a same

class (C2), together with some of the shrublands. 61% of the

sites corresponding to grasses and cereal crops are grouped

in two classes (D2 and E2), with about a quarter of the

broadleaf crop sites and some savannas. The two last classes

(F2 and G2) mix most of the sites corresponding to grasses/

cereal and broadleaf crops, shrubs, savannas, and about half

of the needleleaf forests.

As a conclusion, the statistical analysis show no clear

distinction between different vegetation types regarding to

their reflectance directional signatures.

3.4. Variability of the directional signatures with the biome

That variability of measured BRDFs is further inves-

tigated with respect to predefined bidirectional anisotropy

pattern types, representative of the main directional signa-

tures. Considering the bidimensional space defined by the

values of k1 /k0 and k2 /k0, and for a given number of

classes, the automatic classification identifies the regions of

the most similar directional features. Each cluster is

assigned a Bidirectional Anisotropy Standard shapE

(BASE). It consists in a directional model depending on

only one multiplicative parameter k̃0:

R hs; hv;/ð Þ

¼ k̃k 0 1þ k1

k0

����
class

IF1 hs; hv;/ð Þ þ k2

k0

����
class

IF2 hs; hv;/ð Þ
� �

ð3Þ

k̃0 is adjusted from the reflectance measurements according

to a standard least square method, while the (k1 /k0, k2 /k0)
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values correspond to the barycenter of the class considered.

Each site is then assigned the BASE type that minimizes the

RMSE between the measurements and the adjusted model.

For an increasing number of BASE classes, the variation of

the RMSE of fit to the actual measurements provides a new

insight on the variability of the biome anisotropic features

(Fig. 7).

In the red, 3 BASEs suffice to represent the variability

of the observed anisotropy for the vegetation biomes,

when 6 classes are required for deserts. These subjective

numbers correspond to the minimum number of BASEs

beyond which the RMSE of the fit does not decrease

significantly. The differences between deserts and the

other vegetation biomes derive firstly from the higher

reflectance levels in the red associated to unvegetated

areas. Most of all, this indicates a wider variability of the

directional signatures for deserts than for vegetated

surfaces. The order of magnitude of the RMSE is similar

at both wavelengths in spite of the different reflectance

levels. The higher signal to noise ratio of the measure-

ments in the near infrared translates to an increased

quality of the fit, which in return enhances the dissim-

ilarity of the main anisotropic features as attested by the

larger number of BASE classes (7 up to 10) required to

reproduce the variability of the measurements. Con-

versely, the low reflectances measured in the red are

more subject to noise, which hampers to properly

discriminate between two different BRDFs; the aniso-

tropic features between biomes are consequently

smoothed out.
Fig. 7. Variation of the RMSE of fit with the number of BRDF classes considered a

crops, (4) savannas, (5) broadleaf forests, (6) needleleaf forests, and (7) deserts. T
3.5. Discussion

For the sake of clarity, we have only presented the results

of the Ross–Li model even though other linear kernel-driven

models were applied the same way on the POLDER dataset.

The Roujean (Roujean et al., 1992) and RossThick–LiDense

Reciprocal (Wanner et al., 1995), differing by their descrip-

tion of the structural attributes of the scattering medium,

provided very similar results in terms of variability of the

parameter estimates with the biome type. The variability of

the directional parameters with the biome type expresses the

diversity in structural situations following the vegetative

cycle within a given biome class. These findings indicate the

inadequacy of the biome classification to capture the actual

vegetation structural state and phenology.

Residual aerosol effects that have not been properly

filtered by the selection procedures are a source of

uncertainty in the estimation of the directional parameters.

Nevertheless, most of the analysis on the variability of the

directional signatures with biome type relies on the

measurements at 865 nm where the aerosol impact is small

(small scattering optical thicknesses combined to high

surface reflectances). Therefore we argue that unresolved

aerosol effects, if any, have only a marginal impact on the

previous findings.

The coarse spatial resolution of POLDER is another

issue. One must question if the results obtained at 6 km are

also valid at 1 km, the spatial scale at which the biome map

classification is defined. Because radiance is additive, the

BRDF of a mixed pixel is a linear combination of the
t 670 and 865 nm, for (1) grasses and cereal crops, (2) shrubs, (3) broadleaf

he RMSE corresponds to the average over all sites of each biome class.
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directional signatures of the thematic surfaces it is made of.

Consider a scene observed at a coarse spatial resolution; it

is characterized by the surface parameters ki
0(i=0,1,2). One

can conceptually decompose that scene into an ensemble of

homogeneous surfaces of corresponding parameters ki
j
.

Then, according to Eq. (1), the ki
0 are theoretically a linear

combination of the ki
j, weighted by the areal proportion of

the different components (Roujean et al., 1992; Wanner et

al., 1995). The issue of the spatial heterogeneity for the

estimation (and interpretation) of the BRDF parameters

therefore depends on the spatial scale at which that

heterogeneity ceased to be detected. For most homoge-

neous and heterogenous landscapes, the degree of spatial

heterogeneity (i.e. the variance of the radiometric signal)

changes only slightly beyond 1-km resolution (Garrigues et

al., submitted for publication). Therefore, one may reason-

ably assume that the results obtained at the coarse

resolution of POLDER are also applicable at 1 km, the

nominal spatial resolution of NOAA/AVHRR. Besides, the

monitoring of vegetation dynamics from space is most

often achieved with data at spatial resolutions similar to
Fig. 8. Variation of the standard biome specific BASEs in the principal (solid lines

670 (gray) and 865 (black) nm.
that used here (Lu et al., 2003; Maisongrande et al., 1995;

McCloy & Lucht, 2004; Myneni et al., 1997; Running &

Nemani, 1988) which makes this work very relevant.

Finally, let us stress that the poor information content of

directional signatures to discriminate land cover types has

also been reported at finer resolution (Khlopenkov et al.,

2004).
4. Global BRDF typology

An operational normalization of the bidirectional effects

requires the a priori knowledge of the landsurface aniso-

tropy (Cihlar et al., 1997; Csiszar et al., 2001). Indeed, the

lack of a sufficient directional sampling hampers an accurate

fit by classical semi-empirical models. We investigate here

the possibility of using predefined BASE types for such

reflectance normalization. Their justification follows the

previous results according to which the Earth landsurfaces

exhibit similar bidirectional reflectance shapes that mainly

vary in magnitude.
) and perpendicular (dashed lines) planes, for a solar zenith angle of 40-, at
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4.1. Biome specific BASE types

In a similar way as in Section 3.4, each biome is assigned

a bidirectional standard shape to characterize the anisotropy

in the red and near infrared bands. They are now defined for

each of the seven main vegetation covers as in Fig. 6 (i.e.

the population of the directional parameters is restricted to

the values within one standard deviation from the means):

R hs; hv;/ð Þ

¼ k̃k 0 1þ k1

k0

����
biome

IF1 hs; hv;/ð Þ þ k2

k0

����
biome

IF2 hs; hv;/ð Þ
� �

ð4Þ

The directional shapes of the biome specific BASEs are

given in Fig. 8, in the principal and perpendicular planes

and for a solar zenith angle of 40-; the corresponding

coefficients k1 /k0 and k2 /k0 are provided in Table 4. For

deserts, the BASEs are identical in the red and near infrared.

This biome type, with shrubs in a lesser extent, shows the
Table 4

Directional parameters of the biome specific BASEs at 670 and 865 nm and refle

shrubs, (3) broadleaf crops, (4) savannas, (5) broadleaf forests, (6) needleleaf for

Biomes number

of sites

k1/k0 k2/k0 k̃0 r (Robs)

(�100)

670 nm 1 676 0.1112 1.2709 0.1583 2.45

4462 0.1309 2.52

2 1362 0.1945 0.5837 0.1627 2.69

3874 0.1526 2.63

3 139 0.0840 1.5642 0.1152 2.08

1575 0.1031 2.07

4 497 0.1800 1.1699 0.0782 1.69

3300 0.0784 1.76

5 190 0.1503 2.8778 0.0311 1.12

2514 0.0434 1.5

6 114 0.1444 2.0585 0.0501 1.52

2749 0.057 1.75

7 533 0.0724 0.8977 0.2584 2.98

1341 0.2544 3.04

865 nm 1 676 0.0170 1.9043 0.2347 3.42

4462 0.234 4.19

2 1362 0.1441 1.0984 0.2555 3.9

3874 0.2583 4.05

3 139 0.0658 1.6257 0.2684 4.27

1575 0.2598 4.48

4 497 0.0941 1.6821 0.2455 4.33

3300 0.2475 4.42

5 190 0.2021 1.3195 0.3257 6.79

2514 0.2986 5.72

6 114 0.1426 1.6627 0.1913 4.27

2749 0.2204 4.46

7 533 0.0710 0.9056 0.2957 2.92

1341 0.2976 3.11

The median values obtained for all sites of each biome are given for: the estimated k

measurements; the standard deviation of the measurements r (Robs); the RMSE

accounting for the three parameter Ross–Li model; the error of normalization (Eo

using the adequate biome specific BASE types. For each biome, the first line cor

biome specific directional parameters; the second line (in italic) corresponds to th
most isotropic behavior as expected. Before further inves-

tigating their potentials for normalization purposes, the

ability of these BASE to fit actual measurements is

evaluated.

4.2. Adequacy of the BASEs with the measurements

The inversion of a BASE against measured reflectance

data requires a single free parameter, for each spectral band.

To evaluate the ability of predefined BASEs to reproduce

observed directional signatures, the corresponding RMS

error of fit is compared to that obtained when all three ki
parameters of the Ross–Li model are let free. The results are

gathered in Table 4 together with the characteristics of the

biome specific BASEs. It also shows the median values of

the estimated k̃0 parameter for each biome, and the median

values of the standard deviation of the observations r (Robs)

which quantifies the amplitude of the directional signature.

The statistical results provided were obtained both when

using the full original POLDER database as well as the

reduced one determined after stringent quality control.
ctance measurement retrieval accuracy, for (1) grasses and cereal crops, (2)

ests, and (7) deserts

RMSE (�100)

biome BASEs

RMSE (�100)

Ross–Li

EoN (�100)

1 BASE

EoN (�100)

biome BASEs

1.18 0.98 1.32 1.22

1.34 1.11 1.46 1.42

1.01 0.74 1.27 1.07

1.21 0.91 1.38 1.30

1.09 0.93 1.15 1.09

1.18 1.02 1.26 1.22

0.84 0.74 0.90 0.91

1.02 0.92 1.07 1.12

0.62 0.57 0.67 0.62

1.06 0.92 1.06 1.11

0.9 0.81 0.92 0.90

1.32 1.17 1.38 1.41

1.40 0.93 2.30 1.45

1.63 1.04 2.37 1.73

1.3 0.99 1.55 1.35

1.75 1.20 1.81 1.84

1.13 0.74 1.19 1.19

1.34 0.89 1.38 1.43

1.28 1.11 1.33 1.28

1.54 1.21 1.60 1.56

1.02 0.86 1.10 1.09

1.35 1.07 1.39 1.39

1.26 0.88 2.12 1.27

1.64 1.09 1.98 1.76

1.47 1.01 1.78 1.42

1.99 1.35 2.21 2.18

1.47 0.91 1.98 1.52

1.64 0.99 2.13 1.76

˜
0 parameter corresponding to the best fit of the biome specific BASEs to the

of fit when considering the biome specific BASEs; the RMSE of fit when

N) when considering only one BASE type; the error of normalization when

responds to the results obtained on the same dataset used to determine the

e results obtained using all the sites of the POLDER archive.
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The consistency between the two set of results indicates

the fairly good generality of the biome specific BASEs,

even though they are determined only from a limited

number of sites. The root mean square errors of fit, in

absolute values, are of the same order of magnitude at 670

and 865 nm because of the above mentioned lower signal to

noise ratio in the visible. As expected, the error generally

decreases inversely with the constraints imposed to the

shape of the BRDF. This way, the full BRDF model (with

three degrees of freedom) fits better the measurements than

when the biome specific approach (1 degree of freedom per

biome) is used. However, the differences in the RMS errors

of fit between these interpolation approaches are generally

slight, thus corroborating that a BASE captures satisfactorily

the directional signatures of the corresponding biome type.

Fig. 9 shows the cumulative histograms of the RMSEs of

fit for each biome, when considering the biome specific

BASEs (left) and the three parameter BRDF model (right) at

670 and 865 nm. In the red, the higher errors observed for

the desert sites is compatible with the previous result

pointing out that more BRDF classes are required to reliably

account for the directional variability for this biome. For

vegetated surfaces, needleleaf forests corresponds to the

predefined BASE with the worst fit to the observations. This

is very likely due to lower signal to noise ratio, in relation to

lower reflectance levels and consecutive increased atmos-

pheric noise. Note that the high proportion of sites located in

northern latitudes also enhances that latter issue as well as it

can indicate residual snow contamination. The global

adequacy of the adjusted biome specific BASEs with the
Fig. 9. Cumulative histograms of the RMSEs of fit considering the biome specific

nm. The number of sites considered by biome are given in brackets.
measurements is in accordance with that found with more

complex analytical models (Maignan et al., 2004). Consid-

ering the sites used for calibrating the BASE types, the

median RMSE of fit is, respectively of 0.0123 and 0.0122 at

670 and 865 nm; it is of 0.0122 and 0.0159 when the whole

of the sites are accounted for. The approach therefore ranks

in between the performances of fit of the Walthall (RMSEs

of 0.0133 and 0.0203 nm at 670 and 865 nm, respectively)

and Roujean models (0.0116 and 0.0146). The error of fit is

then, in relative units, of the order of 10% in the red and 5%

in the near infrared.

4.3. Potentials of a BRDF typology for normalization issues

The benefit of using the predefined BASE biome types

for normalization issues is now evaluated. The reflectance

normalization is undertaken by simply multiplying a

reflectance measurement by BASE(hs
0,0,0) /BASE(hs,hv,/)

so as to extrapolate it onto a standard configuration of

observation. This standard configuration corresponds to an

observation at nadir with a solar zenith angle hs
0 of 40-. This

particular hs
0 value was chosen because it roughly corre-

sponds to the average of the illumination angles inferred

from the database. Note that such a normalization procedure

was preferred to the simple use of the k0 parameter because

the latter corresponds to a reflectance that would be

measured under a very specific illumination situation which

is never fulfilled for most sites (at nadir and for a sun at the

zenith); it is therefore more subject to extrapolation errors

when the actual illumination direction departs from it.
BASEs (left) and the three parameter Ross–Li model (right) at 670 and 865
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For a given target, the error of normalization (EoN) is

defined as the root mean square error between the

normalized reflectances, determined for each observation,

and the ‘‘true’’ reflectance value in the standard config-

uration. Because this value is not known, it is determined

from the full BRDF model, the three parameters of which

being estimated from all measurements of the target. The

comparison of the reflectances corrected with the biome

specific BASEs and the ‘‘true’’ ones shows no significant

bias and the distribution of the points along the one-to-one

line has a noise-like pattern (results not shown). The EoN

only slightly exceed the error of fit discussed in Section

4.2. As each individual measurement is taken independ-

ently from the others, the computation of the normalization

error is indeed more sensitive to reflectance fluctuations,

due both to measurement noise and variation of the target

reflectance within the period of synthesis, than the error of

fit, the determination of which explicitly minimizes the

variance of the measurements around the a priori direc-

tional surface.

The purpose of normalization aims at inferring a

reflectance corrected of the bidirectional effects, which

amounts to reduce the reflectance variability. The error of

normalization thus quantifies the residual variance after

correction: the lower it is, the more efficient the normal-

ization is. One cannot expect of a normalization

procedure based on such a priori directional shapes to

perform better than an approach relying on a BRDF fitted

on a full dataset. Conversely, it must significantly reduce

the actual reflectance variability to be valuable. These

aspects are examined by comparing the reflectance

variability (i) when no normalization is performed, (ii)

after normalization based on a single BASE for all biome

types, (iii) after normalization using the biome specific

BASE.

The mean standard deviation of the observations r(Robs)

quantifies, for a given biome type, the variability of the

remote sensed data due mainly to the surface reflectance

anisotropy (and to a lesser extent to observational noise and

temporal variation). r(Robs) corresponds to the error made

when considering the surface as Lambertian: it is on average

of 0.02 in the red and of 0.04 in the near infrared. The

normalization procedure reduces that variability by a factor

2 and 3, respectively, as attested by the values of the EoN.

As expected, and even though the differences are generally

slight, it performs better when using BASEs dedicated to

each vegetation types instead of a single one, in particular

for the unvegetated areas. The benefits gained are the more

prominent in the near infrared in general and for the forest

biomes in particular. The residual error is explained, by the

variability of the BRDF shapes, and also the measurement

errors. The results show that the EoN exceeds only slightly

the error of fit for the three-parameter model. Thus, an a

priori BASE is almost as good as an inverted BRDF to

normalize the measurements. It thus supports the proposed

methodology.
5. Summary and conclusion

The rich archive of POLDER-1 measurements was

analyzed to determine the relationships between vegetation

cover types and their directional signature. To account for the

large range of observation geometries, the BRDF dimension-

ality was reduced to that of the three empirical coefficients of

the Ross–Li model, modified to account for the hot spot

effect within turbid media. Their dependency with biome

type, in the red and near infrared, was investigated using the

MODIS classification map that discriminates the Earth

surface into seven vegetation classes: (1) grasses and cereal

crops, (2) shrubs, (3) broadleaf crops, (4) savannas, (5)

broadleaf forests, (6) needleleaf forests, and (7) deserts. The

results have demonstrated only weak relationships between

biome type and BRDF features, indicating that the angular

information carries little information for biome categoriza-

tion. The biome discernability is more pronounced in the

spectral space of the observations, even when no temporal

evolution of their optical properties was explicitly accounted

for. The high variability of the directional coefficients for

each biome class likely traduces the diversity in structural

situations.

The different Earth landsurfaces were found to exhibit

similar bidirectional reflectance features that translate in

magnitude depending on the leaf and soil optical proper-

ties. Consequently, a standard parameterisation of their

BRDF was proposed. It was defined for each of the

MODIS biome classes. Then, a Bidirectional Anisotropy

Standard shapE (BASE) models a biome specific BRDF as

a function of a single spectral parameter only, that can be

adjusted from any reflectance measurement. The average

error of fit using the BASEs is of the order of 10% in the

red and 5% in the near infrared, all biome type included. It

proves the ability of these a priori directional surfaces to

satisfactorily reproduce the observed directional signatures.

The use of such standard BASEs requires a sole measure-

ment, thus offering the possibility to correct operationally

radiometric data acquired by single angle instruments from

the bidirectional effects. The results indicate that the a

priori BASEs can be used to normalize the reflectance

measurements and decrease the variability due to direc-

tional effects by a factor greater than 2. We are currently

using these BASEs for the correction of NOAA/AVHRR

reflectance time-series at 8 km spatial resolution for

studying long-term carbon fluxes by assimilation in the

ORCHIDEE (Organizing Carbon and Hydrology In

Dynamic Ecosystems Environment) ecophysiological

model (Viovy et al., 2001).
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