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Abstract

This paper describes a correction of directional effects in AVHRR reflectance time series. The method relies on a priori directional signatures,
in the red and near infrared, for various surface covers. The reflectance normalization is applied to the historical Pathfinder AVHRR Land (PAL)
data set acquired between 1981 and 1999. The high frequency variability in the reflectance time series, which is interpreted as a noise due to
varying observation geometry and directional effects, is reduced by a factor greater than 1.7 for most vegetated surfaces. For the analysis of the
vegetation annual cycle and its inter-annual variations, we recommend the use of the Difference Vegetation Index (DVI), following a prior
correction of the directional effects, instead of the commonly used NDVI. Indeed, DVI appears more robust than NDVI to noise resulting from
atmospheric perturbations, which makes it a good candidate for long-term ecological surveys and climate change studies.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The data archive acquired since 1981 by the series of
Advanced Very High Resolution Radiometer (AVHRR) instru-
ments constitutes an unrivaled historical record for monitoring
and understanding the response of the Earth's biosphere to
climate changes (Anyamba et al., 2002; Goetz et al., 2000;
Myneni et al., 1997). Quantitative monitoring of vegetation
density and photosynthetic activity relies almost exclusively on
the analysis of Normalized Difference Vegetation Index (NDVI)
data. NDVI is the difference of the surface reflectivity between
two wavelengths [in the red (R) and in the near infrared (NIR)],
normalized by their sum. The differential reflectance in these
bands is strongly correlated to the photosynthetic activity of
vegetation canopies, because of the large spectral shifts of the
leaf optical properties. In the visible, green leaves strongly absorb
the solar radiation, in proportion to the chlorophyll content: in the
red, more than 80% of the incoming energy is absorbed. In the
near infrared however, the photosynthetic pigments are trans-
parent and the absorption (by the dry matter) is reduced to about
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10%. On the other hand, the reflectance of bare soils is only
slightly larger in the near IR than in the visible. Although NDVI
varies theoretically between −1 and 1, measured values range
between−0.2 and 0.05 for snow, inlandwater bodies, deserts and
exposed soils, and increase from about 0.05 to above 0.7 together
with the density and greenness of vegetation (Myneni et al.,
1997). One reason for the success of theNDVI for themonitoring
of vegetation from spaceborne observations is the rather small
sensitivity to the observation configuration, in contrast to that of
the raw reflectances (Tucker, 1979).

Indeed, variations in the sun-target-sensor geometry induced
by NOAA orbits and AVHRR crosstrack scanning cause a
variability in the reflectance time series that has the same order
of magnitude as the signal related to actual changes in
vegetation. The causes for this reflectance variability with the
observation geometry are twofold: i) atmospheric scattering and
transmission and ii) surface reflectance anisotropy. These
effects are the main reason why reflectance time series are not
used per se for monitoring vegetation changes, whereas there is
a need for assimilation techniques in land surface process
models. The use of NDVI reflectance ratio, as compared to
individual reflectance measurements, reduces the anisotropic
effects from the surface because the directional signatures are
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similar in these wavebands. NDVI, however, remains sensitive
to changes in the observation geometry because of varying
atmospheric path absorption and scattering, as well as
remaining surface directional effects (Myneni & Williams,
1994; Roujean & Bréon, 1995). A recent study (Los et al., 2005)
concludes that NDVI can remain largely contaminated by
BRDF effects, in such extent that, in some cases, its use for
detection of vegetation phenology may lead to significant
errors. An alternate approach for minimizing the angular
variability consists in correcting the directional effects at the
reflectance level (Cihlar et al., 1997; Csiszar et al., 2001;
Duchemin et al., 2002; Leroy & Roujean, 1994; O'Brien et al.,
2000; Shepherd & Dymond, 2000; Strugnell & Lucht, 2001).
This is achieved by fitting the actual measurements with a
Bidirectional Reflectance Distribution Function (BRDF) model
and extrapolating them into a standard observation geometry.

The present work focuses on such reflectance normalization
applied to AVHRR time series acquired between 1981 and
1999. It follows the work of Bacour and Bréon (2005) that
derived simple directional models [or Bidirectional Anisotropy
Standard shapEs (BASEs)] for representative land surface types
of the Earth. The BASEs were defined from the analysis of
POLarisation and Directionality of the Earth's Reflectance
(POLDER) (Deschamps et al., 1994; Bicheron & Leroy, 2000)
directional measurements and for seven biome classes (Knya-
zikhin et al., 1998). The resulting reduction in noise is presented
for the reflectance time series in the red and near infrared. Then,
the effectiveness of the Difference Vegetation Index (DVI,
defined as the difference between near infrared and red
reflectances) and NDVI to characterize vegetation changes are
compared.

2. Reflectance normalization principles

2.1. BASE models

The correction of the angular variability relies on a
bidirectional model to bring the reflectance measurements into
a standard observation geometry. The study makes use of the
BASE models that define standard directional shapes as a
function of the geometry of observation (defined by the solar
zenith θs, view zenith θv, and relative azimuth ϕ, angles):

ASEjðhs;hv;/Þ ¼ 1þ k1
k0 jjd F1ðhs;hv;/Þ þ k2

k0 jjd F2ðhs;hv;/Þ

The F1 function is the geometric kernel of the RossThick–
LiSparse BRDF model (Lucht et al., 2000). F2 is the
corresponding volumetric kernel modified to account for the
hot spot effect within turbid media (Maignan et al., 2004), with
the value of the hot spot half width parameter fixed to 1.5°. The
directional parameters ki

k0
jj (i=1,2) were determined for seven

biomes (j=1,…,7) representative of the major Earth's vegetation
types, according to the MODIS classification map (Knyazikhin
et al., 1998): (1) grasses and cereal crops, (2) shrubs, (3)
broadleaf crops, (4) savannas, (5) broadleaf forests, (6)
needleleaf forests, (7) deserts. The directional parameters were
estimated from POLDER-1 observations in the red (670 nm)
and near infrared (865 nm) over an optimal subset of the
POLDER archive made of 3511 targets (6×6 km2) selected for
their thematic homogeneity (Bacour & Bréon, 2005). In order to
ensure reliable parameter estimates, the directional coverage of
each target was made of at least 120 observations, with view and
solar zenith angles less than 60°.

The approach was based on the observation that, although
the reflectance magnitude of surface targets varies, their
directional signatures are relatively constant. The BASE models
then allow reconstructing any target BRDF R (θs, θv, ϕ) with a
single parameter k̃0 to be adjusted:

Rðhs;hv;/Þ ¼ k̃0 d BASE
jðhs;hv;/Þ

Thus, for a target of known vegetation type, the BRDF
modeling has only one single parameter. Compared to real
observations from the POLDER instrument, the fit of the one-
parameter model performs almost as well as the original three-
parameter model. The error of fit is in the order of 10% in the
red and 5% in the near infrared, in relative units (respectively
0.011 and 0.015 in absolute).
2.2. Reflectance correction

As there is a single free parameter in the BRDF model, the
determination of the parameter k̃0 requires a single reflectance
measurement. It can therefore be used to estimate the target
reflectance in a standard observation geometry. The standard
configuration is here defined as an observation at nadir with a
solar zenith angle θs

0 of 40°. This θs
0 value was chosen because it

roughly corresponds to the average of the illumination angles
inferred from the POLDER database.

It is also an average illumination encountered in the PAL
archive. The normalized reflectance is then determined from the
adequate BASE type by a simple formula:

Rðh0s ;0;0Þ ¼ Rðhs;hv;/Þd BASEjðh0s ;0;0Þ
BASEjðhs;hv;/Þ

Applied on individual POLDER measurements (more than
100 measurements of the same target from different observation
geometries), the normalization methodology reduces the
reflectance variability by a factor larger than 2. The variability
reduction is larger in the NIR (865 nm band) than in the visible
(670 nm band). A likely explanation is that the visible
reflectances are more affected by atmospheric contribution,
both in absolute and relative, than the near IR measurements,
while the proposed method does not correct for such effects.

3. Data

3.1. AVHRR data set

The present work uses the Pathfinder AVHRR Land (PAL)
global reflectance data set acquired daily from July 1981 to
December 1999 (Smith et al., 1997). The data set includes,
together with the reflectances at a spatial resolution of 8 km, the
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corresponding NDVI, geometry of observation (solar zenith,
relative azimuth, and scan angles), quality flags, and cloud
index. The data were recorded by four different AVHRR
instruments onboard NOAA 7, 9, 11, and 14, which all
performed daytime measurements during the afternoon. The
spatial overlap between successive orbits allows a near-daily
coverage of the Earth, weather permitting, with varying view
and illumination geometries. Although the orbits of these
satellites are almost sun-synchronous, they suffer from uncor-
rected orbital drift so that the local time of observation increases
with time (Gutman, 1999; Privette et al., 1995). The radiance
measurements in the red (580–680 nm) and near infrared (725–
1100 nm) channels were calibrated using time-dependent
calibration coefficients so as to correct for post-launch
instrument degradations. The measurements in the PAL data
set are corrected for Rayleigh scattering and ozone absorption,
but not for aerosol scattering and water vapor absorption.

Among the other radiometric products deriving from the
Global Area Coverage (GAC) AVHRR archive, the daily data
from the PAL archive are little used as compared for instance to
the 15-day composite NDVI processed by the Global Inventory
Monitoring and Modeling Studies (GIMMS) group, or the
Global Vegetation Index (GVI) data set (Gutman, 1999).
Beyond the extra costs in data processing involved by daily
measurements, it may be explained by some processing errors in
the original PAL data set (Smith et al., 1997), affecting the solar
zenith angle, the reflectances in channels 1 and 2 as well as
NDVI, and the cloud screening tests. The daily 8 km binary data
are now corrected for these errors. The spatial resolution of
POLDER (6 km) and AVHRR data – through the GAC (4 km)
and PAL (8 km) data sets – are similar. Thus, the BASE
directional models derived from POLDER appear well suited
for the correction of directional effects in the PAL product or
any other product derived from GAC observations.

3.2. Regions of interest

AVHRR PAL data are available in tiles of 125×125 pixels,
each representing a region of 1000×1000 km2. The present
study focuses on four different tiles: 1004 (East of the United
States area located South of the Great Lakes, centered on
[37.53°N, −81.45°W]), 1906 and 1907 (corresponding the
subtropical North West part of Africa encompassing Mali,
Mauritania, Burkina Faso, Ivory Coast and Guinea, and
respectively centered on [19.54°N, −7.03°W] and [10.55°N,
−5.42°W]), and 2103 (Western Europe encompassing most of
France and its eastern bordering countries [46.7°N, 6.12°E]).
These tiles were chosen because they correspond to different
biome types with various vegetation cycles.

For each PAL pixel, the normalization method requires the
prior knowledge of the corresponding vegetation type. For this
purpose, we use the MODIS 1 km biome classification product
(Knyazikhin et al., 1998). 9 × 9 km2 pixels from this
classification centered on the PAL pixel are used. If more
than 10% of the PAL pixel area is identified as water, urban or is
unclassified, it is not used further. For each remaining valid
pixel, the a priori BRDF is computed as the sum of the
predefined BASEs weighted by the fraction of the corres-
ponding biomes within the pixel.

3.3. Cloud screening

Since the monitoring of land surfaces from AVHRR optical
channels requires clear-sky conditions, overcast and cloud
contaminated pixels are eliminated. The cloud detection tests
use the cloud flags of the PAL data, based on the top of
atmosphere (TOA) radiance measurements in the mid and
thermal infrared channels (Agbu & James, 1994). In addition,
we have applied alternative cloud screening tests relying on the
normalized surface reflectances. They derive from the con-
siderations that (i) clouds are more reflective than cloud-free
surfaces and that (ii) reflectance of vegetation is significantly
larger in the near infrared than in the red. In addition to the
screening tests already used by Wu et al. (1995), the pixels
whose reflectance level in the red or near infrared exceeds a
given threshold are screened out. The thresholds correspond to
maximum reflectance values associated to clear sky observa-
tions during monthly periods of synthesis (Bouffiès & Bréon,
1996), at the spatial resolution of about 6×6 km2. The 3×3
neighborhood of each pixel failing one of these tests is also
flagged as cloud.

3.4. Water vapor correction

The temporal variability of the atmospheric water vapor
limits accurate characterization of the biosphere from the
current PAL AVHRR data, where its effects are not accounted
for (O'Brien et al., 2000). Indeed, the absorption by water vapor
can decrease the radiometric signal by roughly 0.7% to 4.4% in
the red, and 7.7% to 25% in the near infrared (Vermote &
Vermeulen, 1999), because of the overlapping between AVHRR
channels and water vapor absorption bands. The water vapor
transmission is determined following the method of Vermote
and Vermeulen (1999), with the total column water vapor
content provided by the ECMWF 40-year Re-Analysis (ERA-
40) Data Archive (Uppala et al., 2005) at a 6-h time step and at
2.5°×2.5° spatial resolution. All AVHRR data shown in the
following have been corrected for water vapor absorption

4. Results

4.1. Illustration of the reflectance corrections

The impact of the surface anisotropy effects and its
correction are shown in Fig. 1. This near infrared reflectance
image is derived from two satellite overpasses separated by
about 100 min. The discontinuity on the original image (Fig. 1a
where the western part is brighter than the eastern one) clearly
evidences the directional effects due to the change in the
observation geometry between the two orbits. The reflectance
normalization as described in Section 2.2 removes this
discontinuity (Fig. 1b): the reflectance values for the eastern
part of the image are decreased by about 18% whereas those for
the western part are increased by 22% on average.
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Fig. 1. Near infrared reflectance map of tile 2103 acquired on 07/23/1985 by AVHRR onboard NOAA-9, after processing of the cloud mask: (a) reflectance data only
corrected for the effects of atmospheric water vapor absorption; (b) data corrected for the effects of both surface anisotropy and water vapor absorption.
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Fig. 2 shows a representative time series of measured
reflectances in the red and near infrared, and the
corresponding NDVI and DVI, for the pixel (34.36°N,
−86.63°E) (tile 1004). The lack of data during 1994 results
from the failure of NOAA-11. The impact of normalization
on the reflectances is particularly manifest on the inset
focused on the NIR reflectances (Fig. 2b). In summer in
particular, when the canopy development induces larger
directional effects as compared to winter or spring where
the sparseness favors more isotropic behaviours, the levels
and the high frequency variability of the measurements are
significantly reduced by the normalization. The results are not
so striking in the visible where the atmospheric noise is larger
than in the near IR, both in absolute and relative units. The
benefits of normalization for DVI seem to match those
previously observed in the NIR. On another hand, the short-
term variability (i.e. noise) in the NDVI time series appears
larger than that for DVI, after correction for the directional
effects. In the following we attempt to quantify the noise in
the times series for both vegetation indices.

For that purpose, the time series of reflectances and
vegetation indices are fitted by the CCGVU routine (Thoning
et al., 1989), specially designed to capture the seasonal cycles
and inter-annual variations in temporal data (originally
dedicated to CO2 concentrations). First, the data are roughly
approximated by a time dependent function Y(t) combining a
second-order polynomial – to represent the long-term trend –
and four yearly harmonic functions – to capture the annual
cycle:

Y ðtÞ ¼
Xnp¼2

i¼0

ait
i þ

Xn¼4

i¼1

a2iþnp−1 sinð2pitÞ þ a2iþnp cosð2pitÞ
¼ P2ðtÞ þ H4ðtÞ
The residuals of the data about Y(t) are then filtered twice to
separate the short-term variations and the long-term trend. The
filtering is performed in the frequency domain by transforming
the residuals of the fit with a Fast Fourier Transform algorithm.
The transformed data are then multiplied by a low pass filter
function h(f)=0.5(f/fci)

4

defined by the cutoff frequency fci. The
low frequency residuals filtered at 80 days (=1/fc1) are added to
the harmonic functions H4(t) to determine a smooth curve
tracking the short-term variations including the seasonal cycle.
The long-term trend is obtained by adding the residual curve
filtered at 667 days (=1/fc2) to the polynomial (P2(t)). These
various components of the curve fitting are illustrated in Fig. 3.
In the following, the smooth curve serves as a reference signal
as high frequency changes in the time series are unrealistic with
respect to vegetation phenology. These are therefore considered
as noise. One can observe in Fig. 2 how the smooth curves
remarkably captures the seasonal cycles in the temporal profiles
of the reflectances and vegetation indices.

4.2. Impact of normalization on the reflectances

We now quantify the impact of the directional normalization
on the noise in the time series. The noise is here defined, for
each pixel, as the root mean square (RMS) of the residuals
between the data (the AVHRR measurements or the
corresponding BRDF corrected values) and the CCGVU fitted
values. Only the pixels with more than 1000 observations
available during the period of synthesis were used (this
concerns 57% of the PAL pixels). Fig. 4 shows that for most
pixels of the four PAL tiles analyzed (92% in the R and 99% in
the NIR), the normalization leads to a reduction of the noise
level. As observed on a single pixel in Fig. 2, the noise
reductions are significant in the near infrared where the
directional effects dominate the signal variability, while they
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Fig. 2. Time series of the reflectances in the (a) red (R), (b) near infrared (NIR), (c) NDVI, and (d) DVI, for the pixel located at (34.36°N, −86.63°E) (tile 1004); also
provided are their biome composition in grasses and cereal crops (GC), broadleaf crops (BC), savanna (Sa), broadleaf forest (BF). Grey: AVHRR data; Black: data
corrected for the directional effects.

Fig. 3. Illustration of the curve fitting by the CCGVU routine on the near infrared reflectance time series for the pixel of coordinates (34.36°N, −86.63°E). Are shown
the sum of the four harmonic functions that approximate the yearly oscillations (dashed line), the smooth curve (corresponding to the reference radiometric signal), the
trend, and the de-trended seasonal smooth curve.
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Fig. 4. Comparison of the reflectance noise between the actual AVHRR reflectance data and those corrected for the directional effects, in the (a) red and (b) near
infrared and for four tiles. The noise is defined as the standard deviation of the residuals between the reflectance data and the curve fitted values. Only pixels with at
least 1000 measurements during the period 1981–1999 are accounted for. Each inset is a bidimensional histogram where white color indicates the highest density of
points.
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are much smaller in the visible, presumably because of the
dominance of atmospheric scattering noise, not corrected by the
normalization procedure. On average, the noise is reduced by a
factor of 1.65 in the NIR and 1.18 in the visible. There are some
spatial structures in the noise reduction however. Indeed, the
tiles in northern latitudes (tiles 1004 and 2103) show a noise
reduction by an average factor of 1.97 and 1.25 in the NIR and
R, respectively. The same ratios are only 1.40 and 1.12 for the
African tiles (1907 and 1906). There are several potential
explanations for this behavior: i) desert surfaces show a larger
variability in their reflectance directional signatures than
vegetated surface do, so that a single BASE performs poorly
for this surface cover (Bacour & Bréon, 2005); ii) atmospheric
aerosol, in particular desert dust, are more present over the
African tiles than over the mid-latitudes tiles, which generate
additional noise in the reflectance that is not corrected by the
normalization procedure.

Fig. 5 details the noise reduction as a function of biome
(according to MODIS classification). It shows the ratio between
the noise of the original reflectance time series and that after
normalization, so that a value greater than one indicates a noise
reduction. The range of the ratio is significantly larger in the
near infrared than in the red, with higher mean values, except
for shrubs and deserts. The gains are the largest for the land
surfaces where the vegetation coverage is dense, broadleaf
crops and broadleaf forest in particular. The lower mean value
of the ratio in the NIR for needleleaf forests can be explained by
an increased contribution of the atmospheric noise in relation to
the low reflectance levels usually observed for that vegetation
type. The large interval of variation with a mean ratio below 1.5
for grasses and cereal crops in the NIR is due to the variability in
vegetation coverage during the vegetation cycle: this translates
into variations of the directional signatures not well reproduced
by the corresponding BASE model. The normalization impacts
are also least for sparsely vegetated surfaces (shrubs and
deserts), which are more isotropic in their reflectance and are
more subject to atmospheric aerosol.

4.3. Information content of NDVI and DVI

4.3.1. Signals of vegetation activity
The potentials of a given vegetation index (VI) to characterize

the surface and its temporal evolution is evaluated with respect to
three criteria quantifying its information content. To evaluate the
useful information that can be inferred from the time series, we
have defined the ratio of the signal to noise when considering i)
the mean radiometric signal, ii), the seasonal signal, and iii) the
inter-annual signal. They are estimated from the curve fitted data
(Fig. 3). The mean signal is determined as the mean of the
smooth curve over the 1981–1999 period. The seasonal signal
corresponds to the standard deviation of the de-trended smooth
curve. The inter-annual signal is defined as the standard
deviation of the so-called “trend” defined by the CCGVU
decomposition. The information content of the seasonal signal is
particularly relevant for the analysis of the annual vegetation
cycle, i.e. onset and length of the vegetation growing season, that
greatly impact the uptake of atmospheric carbon dioxide by the
biosphere (Chrukina et al., 2005). On the other hand, the signal
to noise ratio based on the trend quantifies the capability to
detect inter-annual variations in biomass production.

4.3.2. Information content of NDVI and DVI profiles
Fig. 6 compares the signal to noise ratios (SNRs) based on

the NDVI and DVI time series for the four tiles together. In
most cases, the SNRs obtained with DVI are larger than those
of NDVI: for the mean signal, 76% of the pixels correspond



Fig. 5. Density of the ratios between the reflectance noise associated to the actual AVHRR reflectance data and those corrected from the directional effects, as a function
of the biome type in the red and near infrared. The biomes considered are: (1) grasses and cereal crops (3179 pixels), (2) shrubs (698 pixels), (3) broadleaf crops
(2322 pixels), (4) savannas (5981 pixels), (5) broadleaf forests (4669 pixels), (6) needleleaf forests (89 pixels), and (7) deserts (2909 pixels). Only pixels with a
fractional cover greater than 70% of the same biome class and with at least 1000 measurements during the period 1981–1999 are used. Each bar corresponds to a
histogram where cells darkens with the population density.
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to SNR(DVI) greater than SNR(NDVI); for the seasonal
signal, the proportion is of 76%; it is of 57% when con-
sidering the inter-annual trend of the signal. A large fraction
of the pixels with a higher SNR(NDVI) belong to the African
tile 1906. The same analysis for the three other tiles alone
gives 90%, 91% and 67%, respectively. Again, the poor per-
formance of the directional normalization for low vegetation
coverage explains the differing statistics. For the tile 1906, the
pixels of grass and crop biomes correspond to sparsely
vegetated surfaces with short growing periods. This explains
why, over the full year, these surfaces respond similarly to
shrubs or deserts.

When analyzing the mean signal, the SNR is rather high
for both DVI and NDVI. Indeed, both SNRs are larger than
2.5 for the whole of the pixels. The median value is 5.4 for
NDVI and 6.2 for DVI. Clearly, both vegetation indices
provide useful information that may be associated with
Fig. 6. Comparison of the signal to noise ratios of NDVI and DVI (after the BRDF cor
inter-annual signal. Only pixels with at least 1000 measurements during the period
photosynthetic activity. The information content of DVI
appears somewhat more reliable than that inferred from
NDVI. This may derive from the fact that DVI is more
impacted by the near infrared for which the normalization
works better, and has less noise (because of higher surface
reflectance levels combined to lower atmospheric effects) than
the red channel. Indeed, even if the contributions to DVI in
both wavelengths are similar in absolute values, the near
infrared channel has a greater impact than the red band in
relative units. For NDVI, however, considering that it is a
ratio of the reflectances in the two spectral bands, the R and
NIR measurements have the same contribution in relative
units. It is consequently more impacted by the noise of the
red channel, dominated by atmospheric perturbations.

For the detection of the seasonal cycle, the average SNR is
1.5 times larger for DVI than for NDVI. This demonstrates the
better capability of the DVI to describe the vegetation cycle and,
rection) when considering (a) the mean signal, (b) the seasonal signal, and (c) the
1981–1999 are used.
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potentially, its long-term variations as a result of climate change
and/or anthropogenic activities. This result confirms the
preliminary observation drawn from Fig. 2 concerning the
erratic time series of NDVI in comparison to that of DVI after
directional correction. The seasonal cycle amplitude (quantified
by the standard deviation of the de-trended smooth curve)
exceeds the noise level except for desert or very sparsely
vegetated surfaces.

Clearly, the long-term variations of the reflectance are
significantly lower than the amplitude of the seasonal cycle. As
a consequence, the signal to noise computed from the “trend”
curve is significantly smaller than those based on the mean
signal or the seasonal cycle. The SNRs are less than one for both
DVI and NDVI. This does not mean that a radiometric trend
cannot be detected from the satellite data as many measure-
ments are available for that purpose. Nevertheless, we stress that
the estimation of the trend according to the temporal profiles of
daily vegetation indices is probably biased by the confounding
effect of the orbital drift. Indeed, the drift of NOAA satellite
orbits leads to rather late afternoon overpasses. As a
consequence, the sun zenith angles get large and may
significantly exceed the validity domain of the BASEs (which
is [0°, 60°] for the view and solar zenith angles) by the end of
the satellite lifetime.

Fig. 7 highlights the benefits of using DVI instead of
NDVI by biome type. Values of the ratio between the SNRs
of NDVI and DVI less than 0 indicate that the DVI conveys
more information than NDVI. As previously mentioned, the
information content of DVI exceeds that of NDVI for the
surfaces with the greatest vegetation cover, namely broadleaf
crops, savannas, broadleaf forests, and needleleaf forests. The
use of DVI appears even more relevant for studying seasonal
cycles as shown by the low values of the ratio SNR(NDVI)/
SNR(DVI). The poor results obtained for grasses and cereal
crops and shrublands (mainly in the African tiles) are due to
the sparseness of the vegetation that predominates during the
vegetation cycle, thus increasing the influence of the soil
Fig. 7. Density of the logarithm of the ratios between the SNR of NDVI and DVI, as a
(c) the inter-annual, signals.
background to the reflected radiance. The latter being more
isotropic than simulated by the BASE model, therefore the
directional correction performs poorly.

5. Towards a monitoring of vegetation phenology

The BRDF corrected time series of DVI are thus expected to
permit a more reliable analysis of vegetation changes and
dynamics than with the corresponding NDVI series. In
particular, DVI time series can be used to estimate key
phenological metrics related to the amplitude and length of
the vegetation cycle. It is however necessary to question the
adequacy of the a priori BASE with the “true” surface
anisotropy and to evaluate the impact of normalization on the
actual time course of the vegetation signal. The normalization is
based on the assumptions that the directional signatures are
invariant within the predefined surface cover types and
temporally stable so that the BRDF of a given pixel only varies
in magnitude but not in shape. Hence, seasonal variations of the
surface directional signature are neglected whereas some
studies indicate a variability with the vegetation cycle (Schaaf
et al., 2002). Indeed, a BASE model is built to represent an
average BRDF, encompassing various phenological vegetation
states within a biome type.

We here examine the impact of the surface anisotropy
annual cycle on some phenological indicators estimated from
the time series. We focus on two phenological stages
corresponding to the dates of onset and end of the vegetation
growing season, as well as the magnitude of the annual
signal. Because of the difficulty to confront remotely sensed
estimates at AVHRR spatial resolution with corresponding
phenological in situ observations, the study is based on
radiative transfer simulations. The latter allow also controlling
the uncertainties between the anisotropy of the scene
considered and the a priori BASE. Temporal variations of
the optical properties for several benchmark surfaces are
simulated with the Ross-Li BRDF model, the parameters of
function of the biome type when considering (a) the mean, (b) the seasonal, and



Fig. 8. Left: Envelope of the seasonal variations of the surface BRDF in the red (up) and near infrared (bottom) (derived from the broadleaf forest BASE) used to
generate the reflectance time series (grey) and BASE (broadleaf crops) model used for normalization (black), as a function of the view zenith angle in the principal
plane. Right: zoom on the corresponding de-trended DVI smooth curves determined from the true daily BRDFs in the standard observation geometry (grey dashed
line) and from the data normalized with the prescribed BASE (black plain line).
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which are varied to mimic various vegetation annual cycles.
Three annual cycles of the isotropic reflectance component k̃0
are simulated in the red and near infrared; they derive from
true AVHRR measurements in both wavelengths for surfaces
of different vegetation canopy. Temporal changes of the
surface directional signature are simulated by varying the ki

k0
jj

directional parameters of each BASE around their nominal
value, considering three annual cycles in each waveband. The
latter have been estimated from POLDER-2 observations
(decadal synthesis level 3 products, Lacaze, 2005) over
various homogeneous surfaces, as the barycenters of the three
main classes encompassing the most characteristic annual
profiles. So as to account for intra-class variability, three
magnitudes of these standard profiles are considered. This
represents a total of 1701 different scenarios that are used to
simulate the reflectance time series – in the red and in the
near infrared – in the standard configuration as well as in
AVHRR observation geometries. The latter are those of a
(a) (b)

Fig. 9. Cumulative histograms of the estimation error on the (a) onset, (b) end and (c) m
the root mean square error between the values estimated from the signal normalized w
values of the error corresponding to one standard deviation are also indicated.
pixel from the database in order to represent both realistic
temporal changes of the viewing geometry and the orbital
drift effect. The time series simulated in AVHRR observation
geometry are then normalized by each of the BASE model,
thus introducing a bias between the a priori directional shape
and the “true” surface BRDF. This is illustrated in Fig. 8 (left)
where the reflectances in both wavelengths are simulated
using a BRDF parameterization deriving from the original
broadleaf forest BASE, whereas the BASE used for
normalization corresponds to that of broadleaf crops.

Finally, the DVI values are determined from the reflectance
time series. The de-trended smooth curves deriving from the
normalized reflectances are compared to the benchmark time
series computed in the standard observation geometry. The case
of Fig. 8 (right) indicates how the choice of the a priori BASE
can impact the amplitude of the DVI seasonal cycle. On another
hand, the onset and end dates of the cycles appear only slightly
impacted. The latter are simply determined here as the dates
(c)

agnitude, of the seasonal cycles. For the magnitude, the uncertainty is defined as
ith inadequate BASEs and the true values, divided by the mean of the latter. The
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where the smooth curves intersects the x-axis. The global errors
on the estimation of the phenological parameters are determined
over all cases, as the root mean square error between the values
derived from the normalized time series and those inferred from
the benchmark profiles (for the signal magnitude parameter, it is
expressed as an uncertainty with respect to the mean of the true
values). Fig. 9 presents cumulative histograms of the estimation
errors on the onset, end and magnitude, of the seasonal cycles.
The determination of onsets and ends appears slightly affected
by faulty constraint on the a priori knowledge of the surface
anisotropy, considering the quite disadvantageous cases that
were simulated. The determination error for the onset and the
end of the growing season are respectively of 3 and 4.6 days
(values of one standard deviation of the root mean square of the
estimation errors). On the other hand, the estimation error for
the magnitude of the seasonal signal is 9.6% on the average
(RMS), indicating that it has to be interpreted with caution. The
same analysis based on the time series of near infrared
reflectances and NDVI provide less reliable phenological
parameters: the error of determination for the onset and end is
respectively of 3.4 and 4.8 days when using the NIR
reflectances, and of 6.2 and 8.9 days when using NDVI.
These results confirm that DVI provides a more reliable
information for estimating vegetation phenological stages than
the other radiometric signals.

6. Discussion

Despite the findings that promote the use of DVI for
monitoring long-term changes in vegetation activity, especially
in mid-latitudes, the corrected time series present undesirable
features. In particular, DVI is still sensitive to the orbital drift
effects, despite the normalization of the reflectances in the red
and near infrared. This must be attributed to the violation of the
domain of validity of the standard BRDF models, associated to
solar zenith angles higher than 60° by the end of each satellite
lifetime. Clearly, the normalization error increases together with
the distance between the actual observation configuration and
the standard geometry. In addition, the time series are not
corrected for the aerosol scattering, including the impact of
stratospheric aerosols, which is expected to increase with the
sun angle. Obviously, the long time trend has to be interpreted
with caution because it is very likely confounded with the inter-
sensor changes and the orbital drift effect. Indeed, by
construction of the fit to the time series, most of the impacts
of these artifacts of vegetation change are entirely contained in
the trend part of the fitted signal. When using the seasonal
information (de-trended smooth curve), DVI appears superior to
NDVI because it is more robust to noise, due to imperfect
corrections for aerosol effects or cloud detection (Figs. 2 and 6)
which has a larger relative impact on NDVI. Therefore, the de-
trended seasonal cycle signal is recommended for quantitative
estimation of the long-term variability of the vegetation
phenology (through the analysis of the parameters related to
the length of the vegetation growing season).

On another hand, contrary to NDVI, the Difference
Vegetation Index cannot be used per se to accurately estimate
a biophysical variable characterizing the state of vegetation.
Indeed, we have investigated the possibility to relate DVI to LAI
and/or fAPAR from radiative transfer model simulations. In spite
of the fact that the observation geometry was fixed to the
standard previously defined (viewing at nadir and sun zenith
angle of 40°), the high dispersion of the points in the space
defined by the joint values of DVI and of the biophysical
variable of interest hinder establishing a reliable relationship
between them. The dispersion increases with the vegetation
cover and is larger than that obtained for NDVI.

Other studies stressing the importance of BRDF normal-
ization for accurate estimation of vegetation phenology can be
found in the paper of Los et al. (2005). They conducted a
similar normalization study, however using a different
methodology for deriving the BRDF models, to reduce the
directional effects in AVHRR NDVI time series. Working
both with radiative transfer model simulations and with 10-
day PAL data, they observed a reduction of the BRDF effects
in NDVI data by 50% to 85%. They concluded that the
correction of the effects of the surface anisotropy is
mandatory to retrieve a correct vegetation phenology from
AVHRR NDVI time series. They also determined that the
signal-to-noise ratio in NDVI seasonal variations is larger
than in the long-term trend signal.

7. Summary and conclusion

Standard directional signatures (BASEs) have been defined
from POLDER-1 observations for seven types of biome. They
are used to correct the reflectance time series measured by
AVHRR for the directional effects. The study makes use of
the daily observations from the PAL archive acquired between
1981 and 1999, at a spatial resolution (8 km) coherent with
the BASE definition (6 km). Prior to normalization, the
reflectance data have been corrected for water vapor
absorption and screened from clouds. The results clearly
demonstrate the relevance of the approach as attested by the
average reduction of the high frequency variability (inter-
preted as noise in the time series) by a factor 1.18 in the red
channel and 1.65 in the near infrared. The improvement is
particularly significant at mid-latitudes where a deep and
permanent vegetation cover is observed. On the other hand,
the improvement is less significant over deserts and sparsely
vegetated surfaces; this is due to an increased variability in
surface BRDFs that cannot be accounted for by a single
BASE, and a higher impact of atmospheric aerosols.

Based on these standardized reflectance measurements, the
study has investigated the robustness to noise of the NDVI and
of the Difference Vegetation Index (DVI). The high-frequency
variations of NDVI observed on the time series indicates a high
sensitivity to atmospheric effects. In comparison, the temporal
variations of the DVI appear smoother, albeit only after the
directional normalization is applied. A few quantitative criteria
confirm that DVI is less noisy than NDVI, presumably because
of a lesser sensitivity to atmospheric effects mostly affecting
the shorter wavelengths. This is particularly true for land
surfaces with higher vegetation coverage where the reflectance
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normalization is the more reliable. In this case, the use of the
de-trended DVI signal is particularly relevant for monitoring
inter-annual variability in vegetation phenology, based on the
fluctuations of the vegetation greening and senescence dates
and length of the vegetation cycle.

However, the orbital drifts effects on the reflectance are not
fully corrected by our approach, in particular during the recent
parts of the satellite lifetimes, when the sun zenith angle at the
time of observation exceeds the BASE validity domain. As a
consequence, one cannot fully trust an inter-annual variability in
the amplitude of the seasonal cycle. On the other hand, the
relatively smooth temporal profiles of DVI permit a more
accurate determination of the vegetation greening and senes-
cence compared to NDVI. These features of the AVHRR DVI
time series should improve our knowledge on the response of
the biosphere to climate changes. Our next objective will
therefore be to infer these phenological stages from the
corrected time series. Another improvement is expected with
the use of BRDF data from the PARASOL satellite (CNES),
very similar to POLDER, although with an extended directional
coverage.
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