Remote Sensing of Biodiversity Workshop – Grenoble, November 24th - 25th 2014 *GdR MAGIS – IEEE GRSS – ZA Alpes*

Modeling bird species diversity at broad scale from satellite imagery

Finding the best spatial representation of habitats

D. Sheeren¹, S. Lefèvre¹, S. Bonthoux²

¹DYNAFOR Lab. University of Toulouse, INP-ENSAT

> ²CITERES Lab. ENSNP, Blois

REVIEW

doi:10.1038/nature11148

Biodiversity loss and its impact on humanity

Bradley J. Cardinale¹, J. Emmett Duffy², Andrew Gonzalez³, David U. Hooper⁴, Charles Perrings⁵, Patrick Venail¹, Anita Narwani¹, Georgina M. Mace⁶, David Tilman⁷, David A. Wardle⁸, Ann P. Kinzig⁵, Gretchen C. Daily⁹, Michel Loreau¹⁰, James B. Grace¹¹, Anne Larigauderie¹², Diane S. Srivastava¹³ & Shahid Naeem¹⁴

Nature 486, 59-67 (June 7, 2012)

Where are the species and areas of primary importance?

How to assess and monitor biodiversity?

Remote sensing for mapping or predicting biodiversity

(Nagendra 2001, Duro et al. 2007, Gillespie et al. 2008)

Remote sensing for mapping or predicting biodiversity

Predominant approach (e.g. Gootschalk et al. 2005): Land-cover map as a proxy of species diversity

Remote sensing for mapping or predicting biodiversity

Predominant approach (e.g. Gootschalk et al. 2005): Land-cover map as a proxy of species diversity

Remote sensing for mapping or predicting biodiversity

Emerging approach (e.g. Palmer et al. 2002, Rocchini et al. 2010): Spectral heterogeneity as a proxy of species diversity

Remote sensing for mapping or predicting biodiversity

Emerging approach (e.g. Palmer et al. 2002, Rocchini et al. 2010): Spectral heterogeneity as a proxy of species diversity

Remote sensing for mapping or predicting biodiversity

Emerging approach (e.g. Palmer et al. 2002, Rocchini et al. 2010): Spectral heterogeneity as a proxy of species diversity

Biological data

representation

Remote sensing for mapping or predicting biodiversity

Emerging approach (e.g. Palmer et al. 2002, Rocchini et al. 2010): Spectral heterogeneity as a proxy of species diversity

Biological data

2. Aims of the study

- **Exploring** the potential of **unclassified imagery** to predict bird species richness in France
- Comparing the performance of bird-habitat models based on continuous and discrete representation of habitats

2. Aims of the study

Why birds?

2. Aims of the study

Why birds?

- Well-known taxon with large dataset available at national scale
- Sensitive to global change (Jiguet *et al.*, 2007; Julliard *et al.*, 2004)

Bird data:

- French Breeding Bird Survey (STOC program MNHN)
 - Square of 2x2 km including 10 bird point counts visited twice
 - 1094 squares recorded in 2010 throughout the France

Bird data:

- French Breeding Bird Survey (STOC program MNHN)
 - Square of 2x2 km including 10 bird point counts visited twice
 - 1094 squares recorded in 2010 throughout the France

Response variables (for each square) :

- Taxonomic diversity (sp. richness) : woodland species, farmland species, urban species, generalist species, sum of the four groups
- Functional diversity: Community Trophic Index (CTI), Community Specialization Index (CSI) (Julliard et al. 2006; Devictor et al., 2008)

Remotely-sensed data:

- (1) MODIS image time-series
 - Vegetation index (NDVI & EVI)

- 16-day composit product at 250-meter (MOD13Q1)

Remotely-sensed data:

- (1) MODIS image time-series
 - Vegetation index (NDVI & EVI)

16-day composit product at 250-meter (MOD13Q1)

Provide information about the vegetation state and functioning

Remotely-sensed data:

- (1) MODIS image time-series
 - Vegetation index (NDVI & EVI)
 - Land Surface Temperature (LST Day)
 - 8-day composit product at 1km (MOD11A2)

Remotely-sensed data:

- (1) MODIS image time-series
 - Vegetation index (NDVI & EVI)
 - Land Surface Temperature (LST Day)
 - 8-day composit product at 1km (MOD11A2)

Variations according to land cover type and fractional vegetation cover as well as soil moisture

Remotely-sensed data:

- (1) MODIS image time-series
 - Vegetation index (NDVI & EVI)
 - Land Surface Temperature (LST Day)

Explanatory variables based on two landscape representations:

Remotely-sensed data:

- (1) MODIS image time-series
 - Vegetation index (NDVI & EVI)
 - Land Surface Temperature (LST Day)

Explanatory variables based on

two landscape representations:

(1) Continuous-based variables

Mean and *variance* of NDVI/LSTD index within the STOC squares of bird surveys

Remotely-sensed data:

- (1) MODIS image time-series
 - Vegetation index (NDVI & EVI)
 - Land Surface Temperature (LST Day)

Explanatory variables based on

two landscape representations:

(1) Continuous-based variables

Mean and *variance* of NDVI/LSTD index within the STOC squares of bird surveys

Remotely-sensed data:

- (1) MODIS image time-series
 - Vegetation index (NDVI & EVI)
 - Land Surface Temperature (LST Day)

Explanatory variables based on

two landscape representations:

(2) Discrete-based variables

% of functional classes within the STOC squares of bird surveys

Remotely-sensed data:

- (1) MODIS image time-series
 - Vegetation index (NDVI & EVI)
 - Land Surface Temperature (LST Day)

Explanatory variables based on

two landscape representations:

(2) Discrete-based variables

% of functional classes within the STOC squares of bird surveys

Remotely-sensed data:

- (1) MODIS image time-series
 - Vegetation index (NDVI & EVI)
 - Land Surface Temperature (LST Day)

Explanatory variables based on

two landscape representations:

(1) Continuous-based variables

Mean and *variance* of NDVI/LSTD index within the STOC squares of bird surveys

STATE

(2) **Discrete-based** variables

% of functional classes within the STOC squares of bird surveys

FUNCTIONING

Remotely-sensed data:

- (2) MODIS Vegetation Continuous Field (VCF) product
 - % tree cover per pixel (250-meter)
 - Regression tree classification (Townshend et al. 2001)

Remotely-sensed data:

- (2) MODIS Vegetation Continuous Field (VCF) product
 - % tree cover per pixel (250-meter)
 - Regression tree classification (Townshend et al. 2001)

Explanatory variables based on

a continuous landscape representation:

Mean and *variance* of VCF pixels within the STOC squares of bird surveys

STATE

Land cover data:

• (3) CORINE Land Cover

8 yr	1	200
1	22	
5.	87	
	8. Å	
1.00	20.0	1

- The only land cover database covering all of France
- Dating from 2006, minimum mapping unit = 25ha

Land cover data:

(3) CORINE Land Cover

- The only land cover database covering all of France
- Dating from 2006, minimum mapping unit = 25ha

Explanatory variables based on

a discrete landscape representation:

% of land cover classes within the STOC squares of bird surveys

STATE

Land cover data:

Data for regionalization:

3 kinds of strata

GRECO B : Centre Nord semi-océanique GRECO C : Grand Est semi-continental GRECO D : Vosges GRECO E : Jura GRECO F : Sud-ouest océanique GRECO G : Massif Central GRECO H : Alpes GRECO I : Pyrénées

GRECOJ: Méditerranée

Zone 0 : Grandes cultures ou absence d'élevage
Zone 1 : Cultures et élevages
Zone 2 : Cultures fourragères (herbe et maïs)
Zone 3 : Zone herbagère du Nord-Ouest
Zone 4 : Zone herbagère du Centre et de l'Est
Zone 5 : Zones pastorales
Zone 6 : Montagnes humides
Zone 7 : Haute-Montagne

Climatic strata

Type 1 : les climats de montagne
Type 2 : le climat semi-continental et le climat des marges montagnardes
Type 3 :le climat océanique dégradé des plaines du Centre et du Nord
Type 4 : le climat océanique tempéré
Type 5 : le climat océanique franc
Type 6 : le climat méditerranéen altéré
Type 7 : le climat du bassin du Sud-Ouest
Type 8 : le climat méditerranéen franc
Hors interpolation

4. Methodological approach

4. Methodological approach

4. Methodological approach

Bird species richness explained by *continuous representation*

Bird species richness explained by continuous representation

NDVI & EVI, LSTD, VCF

Bird species richness explained by *discrete representation*

Bird species richness explained by *discrete representation*

CORINE, Functional classification

Comparison: continuous versus discrete representation

Best acquisition period

Toward mapping bird species richness at national scale

e.g. Species Richness of forest birds

Conclusions

- Bird richness patterns are always better explained by continuous data
 - Δ %D² = 17% between VCF and CORINE for SR.Fores
 - Δ %D² = 21% between VCF and CORINE for SR.Agri
 - Δ %D² = 25% between VCF and CORINE for SR.Urb
- Model performance using the VCF product (continuous data) is always better than other data
 - Small difference with NDVI for SR.Fores (Δ %D² = 4%) but higher difference for SR.Agri and SR.Urb (Δ %D² = 16%)

Conclusions

- Functional classification (discrete representation) is another alternative to explore more deeply
 - Always better performance than CORINE Land Cover
 - Close performance to NDVI for SR.Fores, SR.Agri, SR.Urb
- Strong influence of the data acquisition period as well as the use of strata
 - e.g. +32% (D²) for SR.Fores with the best period
 - e.g. +13% (D²) for SR.Agri with strata

Outlook

- Dealing with spatial autocorrelation (Dormann et al. 2007)
- Including additional environmental variables
- Exploring phenological variables
- Testing and assessing the models for **other years**

Outlook

Dealing with spatial autocorrelation (Dormann et al. 2007)

Outlook

- Dealing with spatial autocorrelation (Dormann et al. 2007)
- Including additional environmental variables
- Exploring phenological variables
- Testing and assessing the models for **other years**

Any questions?

david.sheeren@ensat.fr

Best acquisition period

Var réponse \ Var explicative	NDVI	EVI	LSTD	LSTN
RS.Fores	177	177	241	241
RS.Agri	257	065	257	257
RS.Urb	177	177	177	241
RS.Gene	065	065	065	257
RS.Tot	257	273	241	065
CTI	177	177	241	241
CSI	273	177	177	241

065 : début mars (en bleu) - 177 : fin juin (en vert) - 241, 257 et 273 : de fin août à fin septembre (en orange) Les dates en gras correspondent aux synthèses donnant le meilleur modèle par variable réponse.

Data complementarity (without strata)

Figure 24 : D² des modèles de RS.Fores (à gauche) et RS.Agri (à droite)

Predictive power: Spearman's *Rho* and *RMSE* (3-fold cross-validation)

Variable	Type de	Données utilisées	Dha marran	DMCE	
réponse	stratification	dans le modèle	Rho moyen	RIVISE moyen	
RS.Fores		NDVI-177	0,687	2,86	
	Régions climatiques	EVI-177	0,618	3,08	
		LSTD-241	0,614	3,10	
		LSTN-241	0,487	3,41	
RS.Agri	Régions agricoles	NDVI-257	0,503	2,71	
		EVI-065	0,433	2,83	
		LSTD-257	0,455	2,78	
		LSTN-257	0,303	2,91	
RS.Urb		NDVI-177	0,479	2,85	
	Págions agricolos	EVI-177	0,414	2,86	
	Regions agricoles	LSTD-177	0,461	2,85	
		LSTN-241	0,247	3,09	
RS.Gene	Régions agricoles	NDVI-065	0,323	1,91	
		EVI-065	0,392	1,88	
		LSTD-065	0,349	1,90	
		LSTN-257	0,318	1,90	
RS.Tot	Régions agricoles	NDVI-257	0,429	6,40	
		EVI-273	0,436	6,32	
		LSTD-241	0,356	6,49	
		LSTN-065	0,379	6,42	
СТІ	Sylvo-écorégions	NDVI-177	0,654	0,26	
		EVI-177	0,614	0,27	
		LSTD-241	0,711	0,24	
		LSTN-241	0,517	0,28	
CSI	Régions agricoles	NDVI-273	0,480	0,119	
		EVI-177	0,502	0,120	
		LSTD-177	0,481	0,120	
		LSTN-241	0,317	0,128	

Les valeurs en gras correspondent aux meilleures valeurs par variable réponse

Functional diversity

Community Specialisation index

Community Trophic index

$$\text{CSI}_{j} = \frac{\sum_{i=1}^{n} a_{ij}(\text{SSI}_{i})}{\sum_{i=1}^{n} a_{ij}}$$

Replace SSI by STI

where *n* is the total number of species recorded, a_{ij} is the abundance of individuals of species *i* in plot *j*, and SSI_{*i*} its specialization index.

Generalist species: little variation of densities Specialist species: high variation of densities STI based on the position of a species within a trophic chain of 3 levels, those of vertebrates eating vegetables, invertebrates or vertebrates