Montpellier-2019/03/29

Monitoring agrosystems to understand agricultural landscapes

Monitoring agricultural landscapes to understand agrosystems

Damien ARVOR

damien.arvor@univ-rennes2.fr

Bégué A., Betbeder J., Bellon B., Almeida C., Baudry J.

Introduction

Landscape Agronomy (Benoit et al., 2012)

Landscape Ecol (2012) 27:1385–1394 DOI 10.1007/s10980-012-9802-8

PERSPECTIVE

Landscape agronomy: a new field for addressing agricultural landscape dynamics

Marc Benoît · Davide Rizzo · Elisa Marraccini · Anna Camilla Moonen · Mariassunta Galli · Sylvie Lardon · Hélène Rapey · Claudine Thenail · Enrico Bonari

Introduction

Agronomy aims at delivering operative knowledge to the farmers and their organizations

(Deffontaines et al. 1995; Cavazza 1996; Benoît et al. 2007).

Landscape

is the system where farmers interact with both natural and social resources through the management of their fields and of the associated features.

Landscape

is the system where farmers interact with both natural and social resources through the management of their fields and of the associated features.

Introduction

Landscape Agronomy

- 1) landscape patterns
 - are designed by farming practices and natural resources
- 2) landscape patterns and natural resources

are drivers for farming practices

Introduction

Landscape Agronomy

1) landscape patterns are designed by farming practices

2) landscape patterns and natural resources

are drivers for farming practices

Main research issues

1) To characterize landscape patterns based on farming practices

2) To understand the drivers of farming practices for a better assessment of current landscape patterns

3) To assess the impacts of farming practices on ecosystem services to improve the design of future agricultural landscapes

What place for remote sensing?

What place for remote sensing?

Cropping Practice	Crop (Sensor)	Example of Studies
Crop variety	Sugarcane (Hyperion)	Galvao et al. (2005)
	Sugarcane (Landsat)	Fortes and Dematte (2006)
Double cropping	Soybean and others (MODIS)	Arvor et al. (2011)
	Cereals (MODIS)	Qiu et al. (2014)
Harvest date	Sugarcane (SPOT)	Lebourgeois et al. (2007)
	Sugarcane (SPOT)	El Hajj et al. (2009)
Sowing date	Soybean (MODIS)	Maatoug et al. (2012)
Harvest mode	Sugarcane (Landsat, DMC)	Aguiar et al. (2011)
	Sugarcane (Landsat, CBERS)	Goltz et al. (2009)
Irrigation	Various crops (MODIS)	Gumma et al. (2011)
	Wheat (FORMOSAT, ASAR)	Hadria et al. (2009)
	Review	Ozdogan et al. (2010)
Crop residue	Various crops (Landsat)	Pacheco et al. (2006)
	Review	Zhang et al. (2011)
Tillage	Wheat (FORMOSAT, ASAR)	Hadria et al. (2009)
	Various crops (Landsat)	Sullivan et al. (2008)
Row orientation and width	Vineyard (aerial photos)	Delenne et al. (2008)
	Olive groves (QuickBird)	Amoruso et al. (2009)
	Orchards (Ikonos)	Aksoy et al. (2012)
	Vineyard, cereals (aerial photos)	Lefebvre et al. (2011)

TABLE 5.2 Literature Examples of Use of Remote Sensing for Mapping Cropping Practices

Note: References in bold are review papers.

Bégué et al. (2015)

Cropping intensity

Soybean single cropping system

Soybean-cereal double cropping system

Rice-Soybean double cropping system

Central pivots

Sentinel 2

Landsat 8

Tang et al. (unpubl.

Sowing dates

Lucas do Rio Verde

Anticipated sowing date

Late sowing date (after Nov, 15th)

Optimal sowing date

What place for remote sensing?

From farming practices to landscape patterns

How to delineate landscape units?

Almeida et al. (2016)

Almeida et al. (2016)

Image objects derived from segmentation

DATA

MODIS NDVI 16-days composites annual time series

PROCESSING

Principal Component Analysis (PCA) Radiometric features = PC2 – PC20

RESULT

Multiresolution segmentation eCognition Developer 9.0

Clustering of landscape metrics

Betbeder, unpublished

PROCESSING

- Define the window scale (Shannon index = f(window size)
- Sliding window computing several landscape metrics (structure+composition)
- Clustering : ACP and Kmeans classification

What to look for inside landscape units

Main research issues

1) To characterize landscape patterns based on farming practices

2) To understand the drivers of farming practices for a better assessment of current landscape patterns

3) To assess the impacts of farming practices on ecosystem services to improve the design of future agricultural landscapes

Based on cropping systems...

Bellon (2017)

... and information on natural habitats

TERRAClass Amazonia et Cerrado

... and information on natural habitats

Figure 8. Map of the main agricultural land-use systems (ALUS) of the Tocantins state in the 2013-

Figure 2 - Decision tree adopted to identify the agropastoral production systems at the cellular level.

Almeida et al. (2016)

Monitoring the agricultural frontier

Monitoring the agricultural frontier

Paysages dominés par espaces naturels, pâturages et agriculture traditionnelle

Espaces naturels

- En cours de conversion (pâturages et agri. trad)
- Pâturages et agri. traditionnelle majoritaires

Paysages dominés par agriculture « latifundiaire »

- En cours de conversion à agriculture extensive
- Agriculture extensive majoritaire
- Agriculture extensive en cours d'intensification
- Agriculture intensive

Drivers of landscape patterns

Drivers of landscape patterns

Climate to explain agri. intensification

Drivers of landscape patterns

Socio-economic development vs deforestation

Improve the design of agricultural landscapes

The importance of (semi-)natural habitats in agricultural landscapes

Improve the design of agricultural landscapes

The concepts and metrics developed from the "landscape mosaic representation"

Heterogeneity : landscape composition and configuration

Fragmentation & Connectivity

Improve the design of agricultural landscapes

Heterogeneity of composition (mosaic diversity)

Elements are more fragmented (connectivity among patches of one element decreases)

Interfaces, therefore interactions between different elements increases

A higher diversity of resources

Hedgerows

(1) Aerial photographs

Hedgerow map from aerial photographs (Lines)

ALM OF THE OWNER

(2) SPOT-5

Hedgerow map from SPOT-5 (Object without internal structure)

(3) TerraSAR-X

Hedgerow map from TerraSAR-X (Object with internal structure)

(4) LIDAR data

Hedgerow map from LIDAR data (object with internal structure)

Hedgerows

Spatial scale

Hedgerows

Habitat potential derived from the relationship between carabid abundance / LIDAR for two species

Landscape diversity for biological control

Relationship between land cover and a biocontrol service index (BSI)

BSI is mainly explained by : The landscape diversity index (SHDI) The tree density index (TPDI) at a 1750 m radius around sampling sites

⇒semi-natural vegetation, i.e. trees, must be maintained to enhance biocontrol of *H. albipunctella*. (mineuse du mil)

Agri landscapes to mitigate climate change

Double cropping to compensate the evapotranspiration (ET) loss from croplands

Spera et al. Global Change Biology 2016

Forest restoration

Forest restoration

Ex: Indicateurs écologiques

WORK in progress, to be continued...

Limits/Perspectives

The limits of land cover maps: several blind spots

- 1) No difference between patches of the same type of land cover
- 2) Little consideration for internal heterogeneity within patches
- 3) Little consideration for vegetation phenology
- 4) Abrupt interfaces between patches of different types.

Changes in the interface between maize and wheat within a crepping gee

Limits/Perspectives

Deal with spatial gradients?

Limits/Perspectives

Temporal landscape metrics

