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The SoilMoisture andOcean Salinity (SMOS)mission is thefirst satellite dedicated to providing global surface soil
moisture products. SMOS operates at L-band (1.4 GHz) and, at this frequency, the signal not only depends on soil
moisture and vegetation optical depth but is also significantly affected by surface effects and, in particular, by the
soil roughness. However, when dense vegetation is present, the L-band signal is poorly sensitive to the surface
effects. First, by using multiple regressions between soil moisture (SM) and brightness temperature (TB) at
different incidence angles and polarizations, the SMOS sensitivity to the surface effects was evaluated. A
global-scale map of SMOS sensitivity to the surface effects was computed and showed that, for 87% of the land
surface, the SMOS observations were sensitive to these effects, while very low sensitivity to the surface effects
was estimated over 13% of the land surfaces. For instance, over broadleaf evergreen forest (mainly the Amazon
and Congo forests), SMOSwas sensitive to the surface effects over only half of the pixels considered. In a second
step, in L-MEB (L-band Microwave Emission of the Biosphere), the forward emission model of the SMOS
algorithm, the vegetation and roughness effects were combined in a single parameter, referred to as TR in this
study. By inverting L-MEB, SM and TRwere retrieved at global scale from the SMOS Level 3 (L3) TB observations
during 2011. Assuming a linear relationship between TR and the Leaf Area Index (LAI) obtained fromMODIS data,
the effects of roughness (Hr) and vegetation were decoupled and a global map of soil roughness effects was
estimated. It was found that the spatial pattern of the Hr values could be related to the main vegetation types.
Higher values of roughness (Hr = 0.32–0.39) were obtained for forests (broadleaf evergreen, deciduous and
mixed coniferous) while lower values (Hr = 0.14–0.16) were obtained for deserts, shrubs and bare soils.
Intermediate values (Hr = 0.20–0. 23) were obtained over grasslands, tundra and cultivated land. Over vegeta-
tion biomes composed of forests and wooded grasslands, the Hr values were mainly correlated to the vegetation
density (r ~ 0.55). For deserts, shrubs and bare soils, the Hr values were mainly correlated to the topography
slopes (r ~ 0.53). The global maps presented in this study could lead to improved retrievals of soil moisture
and vegetation optical depth for present and future microwave remote sensing missions such as SMOS and
Soil Moisture Active Passive (SMAP).
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1. Introduction

Soil moisture (SM) plays a key role in the interactions between the
hydrosphere, the biosphere and the atmosphere, as it controls both
evaporation and transpiration from bare soil and areas with vegetation,
respectively. For many applications, global or continental scale soil
moisture maps are needed. Numerous studies have been conducted or
are currently underway to obtain soil moisture estimates from
spaceborne microwave instruments (Entekhabi et al., 2010; Kerr et al.,
2001; Njoku, Jackson, Lakshmi, Chan, & Nghiem, 2003; Wagner,
Lemoine, & Rott, 1999). Microwave remote sensing is able to provide
ens).
quantitative information about the water content of a shallow, near-
surface layer (Schmugge, 1983), particularly in the low-frequency
microwave region from 1 to 10 GHz. L-band is the optimal wavelength
for sensing soil moisture with spaceborne passive microwave instru-
ments (Kerr et al., 2001). The Soil Moisture and Ocean Salinity (SMOS)
satellite is the first L-band satellite specifically dedicated to mapping
soil moisture over land with a mission objective of 0.04 m3 m−3 over
bare and sparsely vegetated areas (Al-Yaari, Wigneron, Ducharne,
Kerr, De Rosnay et al., 2014; Al-Yaari, Wigneron, Ducharne, Kerr, Wag-
ner et al., 2014; Kerr et al., 2001; Kerr, Waldteufel, Wigneron et al.,
2010). The temporal resolution of SMOS is three days with a nominal
spatial resolution of 43 km. The recent Soil Moisture Active Passive
(SMAP) satellite alsomaps soil moisture at L-bandwith a spatial resolu-
tion of ≈40 km (Entekhabi et al., 2010).
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The passive microwave emissivity of land surfaces is mainly
determined by the characteristics of the soil and vegetation, except
for regions covered by openwater or snowcover. Themain soil character-
istics affecting themicrowave emissivity are soil moisture, surface rough-
ness, and soil structure and texture. The vegetation layer attenuates the
emissivity of the soil and emits its own contribution. This layer is charac-
terized by its water content, geometric structure, and spatial distribution
of the trunks, branches and leaves. To model all these characteristics in a
radiative transfermodel, a large number of parameters are required. Very
good knowledge of these parameters is required to obtain high quality
estimates of soil moisture. Moreover, the passive microwave sensors
have coarse spatial resolution (typically around 10–60 km), so there is
generally a variety of land uses and cover, and soil and vegetation types
in the sensor footprint. Currently, it is not possible to parameterize the
soil and vegetation effects for all the land covers in the radiative transfer
model. Only a reduced number of these parameters, referred to as effec-
tive parameters (Wigneron, Laguerre, & Kerr, 2001), are usually used in
the soil moisture retrieval algorithms. The accuracy of the soil moisture
retrievals over vegetated land surfaces depends, to a great extent, on
the modeling used to represent the effects of vegetation and roughness.
The denser the vegetation layer is, the smaller is the influence of
the soil layer on the measured signal (Grant et al., 2008; Kirdyashev,
Chukhlantsev, & Shutko, 1979). So, soil moisture retrievals will be less
accurate over dense forests than over sparse vegetation.

Similarly, the modeling of the soil roughness effects plays a key role
in the SM retrieval algorithm at L-band. Increasing surface roughness
effects leads to an increase in the measured brightness temperature
(TB) and to a decrease of the sensitivity of the L-band observations to
soil moisture. For example, Montpetit et al. (2015) showed that the in-
crease in TB due to the effects of surface roughness could be as large as
45K forwet soils and 25K for dry soilswhen very rough soilswere com-
pared with smooth surfaces. The decrease in the slope of the relation-
ship between reflectivity and SM was about 33% between a smooth
surface (σ = 0.05 mm) and a rough surface (σ = 30 mm). In the
SMOS algorithm, the effects of soil roughness are computed by using a
semi-empirical model (Wegmuller & Matzler, 1999; Wigneron et al.,
2011) initially developed by Wang and Choudhury (1981). This model
is based on four roughness parameters: Qr accounts for the polarization
mixing effects (dimensionless number), Hr accounts for the roughness
intensity (dimensionless number, frequency dependent) and Nrp gov-
erns the angular dependence of the reflectivity caused by the rough sur-
face (dimensionless number). To investigate the value of these model
parameters, a variety of groundmeasurements and airborne campaigns
at L-band and over different types of vegetation have been carried out in
the past (Cano et al., 2010; Escorihuela et al., 2007; Grant et al., 2007;
Lawrence, Wigneron, Demontoux, Mialon, and Kerr, 2013;
Mo, Choudhury, Schmugge, Wang, and Jackson, 1982; Saleh et al.,
2007; Schlenz, Fallmann, Marzahn, Loew, and Mauser, 2012; Wang
et al., 1982; Wigneron et al., 2001, 2007, 2011, 2012 among others).
These studies provide only local estimates of the roughness parameter
values and, even for the same types of soil conditions, the values of
the parameter may differ. Moreover, the scale of all these previous
studies was not representative of the large satellite footprints of
spaceborne sensors. In parallel, several airborne campaigns have been
carried out with the same aim (Jackson, Schmugge, and O'Neill, 1984;
Merlin, Walker, Panciera, Escorihuela, and Jackson, 2009; Panciera,
Walker, Kalma, et al., 2009; Panciera, Walker, and Merlin, 2009;
Panciera et al., 2014; Peischl et al., 2012; Saleh et al., 2004, 2009
among others). Despite a larger spatial resolution, the roughness
parameter values were difficult to estimate and no consensus emerged.

As it is usually difficult to decouple the effects of surface roughness
and vegetation on the passive microwave signal, some SM retrieval
algorithms propose to combine the vegetation and roughness effects
in a single parameter (referred to as TR in this study) so as to reduce
the number of unknown parameters. In this paper, the TR parameter
is defined as TR=Hr/2+τnad, where Hr is the soil roughness parameter
and τnad is the vegetation optical depth. For example, this is the case for
the NASA Advanced Microwave Scanning Radiometer (AMSR-E)
algorithm (Njoku & Chan, 2006), the AMSR-E Land Parameter Retrievals
Model (Owe, de Jeu, & Walker, 2001) and also for the TRMM TMI SM
retrieval algorithm (Bindlish et al., 2003). At L-band, this approach has
already been evaluated at local scale by Saleh, Wigneron, de Rosnay,
Calvet, and Kerr (2006) and Fernandez-Moran et al. (2015) and at
continental USA scale by Parrens, Wigneron et al. (2014).

The aim of this study was to evaluate and map the sensitivity of the
L-band microwave observations to soil roughness effects, by analyzing
the observations made by SMOS in 2011 at global scale. First,
we attempted to classify the land surfaces into two main categories:
(1) surfaces where the sensitivity of the SMOS TB observations to the
surface effects is very low (mainly due to the masking effects of dense
vegetation covers) and (2) surfaces where the sensitivity of the
SMOS TB observations to the surface effects can be clearly identified
(the vegetation density is not sufficient to mask the surface emission).
In a second step, over regions belonging to the second category, we
attempted to compute maps of the roughness parameter (Hr). To that
end, we used the retrieval method based on the TR parameter, combin-
ing the effects of the vegetation and roughness. First, TR and SM were
retrieved simultaneously and at global scale from the SMOS L3 TB
during 2011 by inverting the L-MEB model (L-band Microwave
Emission of the Biosphere). Then, the effects of the vegetation and soil
roughness included in the TR parameter were decoupled using a simple
method described by Wang et al. (2015) to map the roughness param-
eter Hr at L-band.

The SMOSdata and the other datasets used in this study are present-
ed in Section 2, the L-MEBmodel and the simplification of themodel by
combining the soil roughness and vegetation effects are presented in
the following section (Section 3). The latter section also presents the
methodology used to compute the two maps: (1) the SMOS sensitivity
to the surface effects and (2) the estimation of the soil roughness pa-
rameter (Hr) at global scale. Results and analysis of these maps are
given in Section 4, followed by a discussion and conclusions in Section 6.

2. Data

2.1. SMOS Level 3 data

The SMOS mission is a joint program of the European Space Agency
(ESA), the Centre National dEtudes Spatiales (CNES), and the Centro
para el Desarrollo Teccnologico Industrial (CDTI) in the framework of
the Earth Explorer Opportunity Mission initiative. It is the first satellite
specifically dedicated to soil moisture retrievals with an L-band passive
microwave radiometer at 1.4 GHz. SMOS has a sun-synchronous orbit
at 757 km altitude with a 06:00 LST ascending equator crossing time
and an 18:00 LST descending equator crossing time. The globe is fully
imaged twice every three days. The main innovative feature of SMOS is
the capability for multi-incidence-angle observations at full polarization
across a 900 km swath. Acquisitions of brightness temperatures at differ-
ent angles aremade quasi-simultaneously over any location on the Earth.

In this study, the SMOS Level (L) 3 TB products (Al Bitar et al., in
preparation) produced by the Centre Aval de Traitement des Données
SMOS (CATDS) are used. These data are projected on the Equal-Area
Scalable Earth (EASE) grid (Armstrong, Brodzik, & Varani, 1997) with
a spatial resolution of 25 km × 25 km. The main differences between
the SMOS L3 TB and the other lower levels of data are: (i) the L3 TB
products are expressed at the top of the atmosphere over the terrestrial
reference frame (H and V), and (ii) they are bin averaged from 2.5° to
62.5° every 5°. In this study, angles of incidence at 22.5° ± 2.5°,
32.5° ± 2.5°, 42.5° ± 2.5° and 52.5° ± 2.5° on ascending orbits of the
SMOS L3 TB version 2.7 were considered to perform the SM and TR
retrievals over the full globe during 2011.

Radio Frequency Interference (RFI) originating from man-made
emissions in the protected/shared bands (i.e. satellite transmissions,
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aircraft communications, radar, TV radio-links, FM broadcasts, and
wireless camera monitoring systems) perturbs the natural microwave
emission from the Earth's surface that is measured by passive micro-
wave systems. These RFI have a significant impact on the TB at L-band
(Oliva et al., 2012; Skou, Misra, Balling, Kristensen, & Sobjaerg, 2010).
The SMOS L3 data were filtered to remove data contaminated by
SMOS Radio Frequency Interference (RFI) by using amplitude limits
and Stokes parameter limits but some low intensity RFI effects could
still be present in the data. To remove these residual RFI effects as far
as possible, quality control was applied to the SMOS L3 data by using
the SMOS L3 SM flags and filtering out all the data where
(i) DQX N 0.06 or (ii) DQX was equal to fill value or (iii) the probability
of RFI was higher than 20% (Rodriguez-Fernandez et al., 2014; Wang
et al., 2015). Retrievals cannot be computed over frozen soil. So, data
obtained when the surface temperature was below 277 K were also
filtered out (Parrens, Mahfouf, Barbu, & Calvet, 2014).

The auxiliary SMOS L3 data contain the percentage of nominal
fraction (FNO) and forest fraction (FFO) for each pixel. In the operation-
al SMOS retrieval algorithm, the SM and vegetation optical depth (τnad)
retrievals are performed only over the nominal part. Over a pixel, this
part is essentially composed of bare soil and low vegetation surfaces.
The FFO is the percentage of forest present in a SMOS pixel. The FFO
and FNO fractions are explained in detail in Kerr et al. (2012). In this
paper, these quantities are used to analyze the soil roughness maps.
2.2. Other datasets

The surface soil temperature produced by the European Centre for
Medium-range Weather Forecasting (ECMWF) for the top 0–7 cm
from the surface was used in this study. This product was obtained by
the SMOS L3 preprocessor,which computed the spatiotemporal average
of the ECMWF forecast products on the EASE grid, and the soil texture
was provided by the Food and Agriculture Organization at the SMOS
spatial resolution (FAO, F., 1988).

To analyze the different maps computed here, the global land cover
map from the Second Global Soil Wetness Project (GSWP2) was used
(Dirmeyer et al., 2006). This map is based on the International
Geosphere–Biosphere Programme (IGBP) classification system and
contains twelve land cover biomes. The spatial resolution of the product
is 1° and the data were re-scaled to the SMOS EASE grid (Fig. 1).

The digital elevation model obtained by the Shuttle Radar Topogra-
phy Mission (SRTM) (Jarvis, Reuter, Nelson, & Guevara, 2008) with a
spatial resolution of 30 arc sec (approximately 1 km) was also used to
compute global elevation and topography slopemaps. These data result
from the Global 30 Arc-Second Elevation (GTOPO30) computed at the
U.S. Geological Survey's EROS Data Center (USGS) and available at
https://Ita.cr.usgs.gov/GOTO30. The elevation map was computed by
averaging all the SRTM elevation values present in a SMOS pixel while
Fig. 1. Distribution of the major vegetation biome
the topography slope map was computed by calculating the standard
deviation of each SRTM elevation value present in a SMOS pixel.

The MODIS Leaf Area Index (LAI) data were also used to distinguish
areas with low and high vegetation density and to create the Hr map.
These data were obtained from the MCD15A2 products (MOD13A2,
MCD15A2, U.R.O., Science (EROS) center, Sioux Falls, S.D., 2010). The
spatial resolution of the product is 1 km. To be used in this study, it
was re-scaled in the SMOS EASE grid following the methodology
described in Lawrence et al. (2014). The mean values of LAI produced
from theMODIS data over the full globe during 2011 are shown in Fig. 2.

3. Method

3.1. Overview and simplification of the τ−ω model

The radiative transfer model used was the L-MEB model (Wigneron
et al., 2007) implemented in the SMOS operational surface soil moisture
retrieval algorithm (Kerr et al., 2012). The following presentation
concentrates only on the basic principles of L-MEB as details of the
model structure and parameterization have been given in several stud-
ies (Kerr, Waldteufel, Richaume et al., 2010;Wigneron et al., 2007). The
L-MEBmodel is based on the τ−ωmodel which is a widely recognized
approach in the simulation of land surface emission using simplified
(zero-order) radiative transfer equations (Jackson & Le Vine, 1996; Mo
et al., 1982; Njoku et al., 2002; Wigneron, Chanzy, Calvet, & Bruguier,
1995). This model represents the soil as a rough surface in contact
with a homogeneous vegetation layer. The brightness temperature can
be expressed as a three-component model (Eq. (1)). The first part is
the upward radiation from vegetation, the second is the downward
emission from vegetation that is reflected by the soil and then attenuat-
ed by the canopy, and the last is the soil emission attenuated by the veg-
etation canopy.

TB p;θð Þ ¼ 1−ωp
� �

1−γ p;θð Þ
� �

Tcγ p;θð ÞrG p;θð Þ þ 1−ωp
� �

1−γ p;θð Þ
� �

Tc

þ 1−rG p;θð Þ
� �

γ p;θð ÞTG ð1Þ

where TG and TC are the effective soil and vegetation temperatures,
respectively. rG is the soil reflectivity, ωp is the effective scattering albe-
do accounting for the effects of canopy volume scattering (Kurum,
2013) and γ is the vegetation attenuation factor. p and θ are the polari-
zation and the incidence angle of the observations. Van de Griend and
Owe (1994), Mladenova et al. (2014), and Njoku and Chan (2006)
showed that the ωp had only slight effects on the range of the radiation
emitted from vegetated surfaces at microwave wavelengths. For
simplicity, in this study, we set ωp equal to zero (Jackson, 1993;
Njoku & Chan, 2006; Parrens et al., 2016; Van de Griend & Owe, 1994;
Wang et al., 2015). Furthermore, we assumed that the effective soil
and vegetation temperatures were equal and represented by T. This
s in accordance with Dirmeyer et al. (2006).

https://Ita.cr.usgs.gov/GOTO30


Fig. 2.Mean LAI values obtained from MODIS data for 2011.
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assumption is reasonable at 6 a.m (Jackson, 1980; Parrens et al., 2016).
These assumptions led to the following simplified equation:

TB p;θð Þ ¼ T 1−γ2
p;θð ÞrG p;θð Þ

h i
: ð2Þ

To model the soil reflectivity, the L-MEB model is based on a semi-
empirical approach which has been tested against experimental data
sets at L-band (Escorihuela et al., 2007; Saleh et al., 2007; Wigneron
et al., 2001, 2007, 2011). The approach was initially developed by
Wang and Choudhury (1981) and Wegmuller and Matzler (1999) and
the Nrp parameter was included in the soil roughness modeling in a
second step. The roughness modeling is based on four roughness
parameters (Hr, Qr and Nrp) and smooth soil reflectivity (rG(p,θ)). The
p-polarized soil reflectivity (rG(p,θ)) is given by:

rG p;θð Þ ¼ 1−Q p;θð Þ
� �

r�G p;θð Þ þ Q p;θð Þr
�
G p;θð Þ

h i
exp −Hr cosNrp θð Þ� �

: ð3Þ

rG(p,θ)⁎ is calculated from the soil permittivity value by applying the
Fresnel equations (Ulaby, 1982). The soil permittivity depends on the
properties of the soil, including the soil moisture content. Several
models are available to calculate this value. In this study, the soil permit-
tivitywas computedwith theMironovmodel,which is currently used in
the SMOS operational retrieval algorithm (Mironov, Kerr, Wigneron,
Kosolapova, & Demontoux, 2013). Thismodel computes the soil permit-
tivity as a function of the soil clay content (%), the soil temperature and
the soil moisture content. Hr is an effective roughness parameter that
accounts for (1) geometric roughness effects, in relationwith the spatial
variations in the soil surface height and (2) dielectric roughness effects
in relationwith the spatial variations in the dielectric constant at the soil
surface and within the soil, which can be caused by non-uniformities in
the soil characteristics (soil moisture content, texture, density, etc.)
(Escorihuela et al., 2007; Saleh et al., 2006; Wigneron et al., 2001). At
L-band wavelengths, the Hr value ranges from ~0 (for smooth surfaces)
to ~1 (for very rough soils) (Wigneron et al., 2001). The Nrp parameters
are used to account for angular effects on the soil reflectivity that are
due to surface roughness. In the literature, there is no clear consensus
on the value of this parameter. The values used for Nrp generally vary
from −1 to 2 (Escorihuela et al., 2007; Saleh et al., 2007; Wigneron
et al., 2001, 2007, 2011). In this study, following the results obtained
by Lawrence et al. (2013), the values of Nrp for the two polarizations
were set equal (NrH=NrV). In L-MEB, theQr parameter accounts for po-
larization mixing effects. Wang, O'Neill, Jackson, and Engman (1983)
found that small values for Qr were obtained in the L-band. This is in
agreement with most of the published studies based on large experi-
mental data sets (Escorihuela et al., 2007; Montpetit et al., 2015; Saleh
et al., 2007; Wigneron et al., 2001, 2007, 2011) and we considered,
here, that Qr = 0.

The vegetation attenuation factor due to the canopy, also referred to
as transmissivity, depends on the angle of incidence and the polariza-
tion. It is expressed as:

γ p;θð Þ ¼ exp
−τnad cos2 θð Þ þ ttp sin

2 θð Þ
� �

cos θð Þ

0
@

1
A: ð4Þ

τnad is the optical depth at nadir (i.e. θ=0∘) and it is independent of
both the angle of incidence and the polarization. ttp is a specific vegeta-
tion parameter accounting for the effect of the vegetation structure on
the angular dependence of τnad. We assumed that ttH= ttV=1. This
corresponds to isotropic conditions, where the optical depth of the
standing canopy is assumed to be independent of both polarization
and angle of incidence. Considering that, at coarse spatial resolution,
the pixel includes a variety of vegetation types, the effects related to
the structure of a variety of vegetation canopies are mixed together, so
it is reasonable to assume that the optical depth is polarization-
independent (ttH= ttV=1) (Mladenova et al., 2014; Owe et al., 2001;
Van de Griend & Owe, 1994).

As mentioned in the Introduction, the present study is based on the
simultaneous retrievals of SM and TR (parameter combining the effects
of surface roughness and vegetation). This method has been used in
several studies in the literature (Bindlish et al., 2003; Jackson, Hsu, &
O'Neill, 2002; Njoku & Chan, 2006; Saleh et al., 2006; Schmugge,
Jackson, Kustas, & Wang, 1992). At L-band, the combination of the
vegetation and roughness effects in the L-MEB model was analyzed in
detail by Bindlish et al. (2003), Fernandez-Moran et al. (2015),
Jackson et al. (2002), Njoku and Chan (2006), Saleh et al. (2006), and
Schmugge et al. (1992).

By combining Eqs. (2), (3) and (4), TB at a given angle of incidence
and polarization can be expressed as:

TB p;θð Þ ¼ T 1−r�G p;θð Þ exp
−2τnad
cos θð Þ −Hr cosNrp θð Þ

� �� 	
: ð5Þ

Based on a previous study (Parrens et al., 2016),Nrpwas set to−1 to
combine the vegetation and roughness effects in a single parameter
(TR). Note that, in the past, several studies (Cano et al., 2010;
Escorihuela et al., 2007; Saleh et al., 2007; Schlenz et al., 2012;
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Wigneron et al., 2007, 2012) have also set this parameter to −1. The
combined vegetation and roughness parameter is expressed as:

TR ¼ τnad þ
Hr

2
ð6Þ

and the radiative transfer model (Eq. (1)) can be simplified to:

TB ¼ T 1−r�G p;θð Þ exp −2TR= cos θð Þð Þ
h i

: ð7Þ

Note that, when simultaneous retrievals of SM and TR are made,
there is no need to calibrate the Hr parameter (as it is implicitly
accounted for in TR).

3.2. The retrieval process

In this study, the simplified radiative transfer model combining the
roughness and the vegetation effects (Eq. (7)) was inverted to retrieve
SM and TR over the whole globe during the year 2011. The retrievals
were made when at least six observations were available, including
both polarizations and at least three angles of incidence among the fol-
lowing four values available in the Level 3 TB data set: 22.5∘±2.5∘,
32.5∘±2.5∘, 42.5∘±2.5∘ and 52.5∘±2.5∘. The model inversion was
based on minimizing the following cost function (CF):

C F ¼
X

TBo
θ;pð Þ−TBs

θ;pð Þ
� �2

σ2
TB

þ
X

i
pi−piniti

� �
σ2

p
: ð8Þ
Fig. 3. Summary of the methodology used to
The cost function (Eq. (8)) includes the classical cumulative squared
difference between the simulated and observed brightness tempera-
tures (TBs and TBo, respectively) normalized by the uncertainties in
the first term of the equation and the additional terms that account
for the squared difference between the current value (pi) and the initial
guess (piinit) of each SM and TR variable were σp ,SM=0.02 m3 m−3 and
σp ,TR=0.05 respectively. These values are of the same order of magni-
tude as those used in the literature (Cano et al., 2010; Wigneron et al.,
2007). The standard deviation of the TB measurements was set equal
to σTB=2.5 K in accordance with Wigneron et al. (2007). The TB
observations were taken to be independent, considering the technical
specifications for the design of the SMOS antenna. The initial values
for the retrieved parameters SM and TR were set equal to 0.2 m3 m−3

and 0.2, respectively (Wigneron et al., 2011).

3.3. Computing the global roughness maps

3.3.1. General approach
A general scheme of the approach we used to compute the Hr

parameter at global scale is given in Fig. 3. Three main steps can be
distinguished in the general approach:

1. First, we considered pixels where there was bare soil and/or sparse
vegetation cover over a sufficient period of time (case 1 correspond-
ing to bare soil and/or sparsely vegetated surfaces) and pixels where
there was vegetation cover all the time (case 2 corresponding to
vegetated surfaces). The “sufficient period of time” was defined
here by a minimum of 40 observation dates and a threshold value
of LAI equal to 0.5 m2 m−2. More specifically, pixels for case 1 were
compute the maps of the Hr parameter.
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selected as pixelswhere the LAI datawere lower than 0.5m2m−2 for
at least 40 observation dates, while the pixels that did not satisfy this
condition were considered as case 2.

2. Second, for vegetated pixels corresponding to case 2, we distin-
guished betweenpixelswhere the SMOS observationswere sensitive
to the surface effects (defined here as category 1) and pixels where
there was a very low sensitivity of the SMOS observations to the
surface microwave emission (defined here as category 2). Over the
pixels corresponding to the latter category, no Hr retrieval could be
carried out and the pixels were considered as unclassified pixels.

3. Third, over pixels corresponding to category 1 or case 1, 2-parameter
retrievals of SM and TR (parameter accounting for the combined ef-
fects of vegetation and surface roughness) were performed over
the whole globe, except over areas where RFI probability was higher
than 20%. Then, vegetation and roughness effects were decoupled to
compute the Hr parameter.

More details about this general approach for steps 2 and 3 are given
below.

3.3.2. Mask of the SMOS sensitivity
Over some pixels (such as pixels with dense vegetation), the

soil emission signal is almost totally masked by the vegetation layer.
We attempted to compute a map locating pixels where the SMOS
observations were sensitive to the surface effects and pixels where
there was very low sensitivity of the SMOS observations to the soil
microwave emission. In this study, we considered that, over pixels
covered by bare soil and/or sparsely vegetated surfaces (case 1), SMOS
was sensitive to the surface effects (Kerr et al., 2001). Over the vegetat-
ed pixels corresponding to case 2 (where 40 observation dates corre-
sponding to low vegetation conditions, i.e. LAI lower than 0.5 m2 m−2

were not available), the following regression equations, as defined by
Eq. (9), were used:

SM ¼ a1 p; θð ÞTB p; θð Þ þ b1 p; θð Þ ð9Þ

where a1(p,θ) is the slope parameter and expresses the variations of SM
with respect to the variations of TB, and b1(p,θ) is the intercept param-
eter. Eight regressions were performed over the full globe for the
different values of the angle of incidence (θ) (22.5∘±2.5∘, 32.5∘±2.5∘,
42.5∘±2.5∘ and 52.5∘±2.5∘) and the two polarizations (p = H or V). It
is well known that an increase in SM leads to a decrease in the TB values
(Schmugge, 1983; Ulaby, 1982; Wigneron et al., 2001). So, positive
values of a1(p,θ) were interpreted as a sign of very low sensitivity of
TB to the soil surface effects. For a given pixel, if all the slope parameters
of the eight regression equations had a negative value, we considered
that SMOS was sensitive to the surface effects over this pixel (case cor-
responding to category 1). Conversely, for a given pixel, if at least one of
the slope parameters of the eight regression equations had a positive
value, we considered that SMOS observations had very low sensitivity
to the surface effects over this pixel (case corresponding to category
2). Note that (results not shown), when one of the values of a1(p,θ)
was positive, in general, all the values of a1(p,θ) for the different values
of incidence angle and the two polarizations were positive. Moreover, if
the correlation value (r) between SM and TR was lower than 0.4 or the
p-value was higher than 0.01, we consider very low sensitivity of the
SMOS observations to the surface effects over this pixel (category 2).

Following this methodology, a mask of the SMOS soil sensitivity to
the surface effects was computed.

3.3.3. Soil roughness maps
The computation related to the soil roughness map was made only

over the pixels corresponding to case 1 (corresponding to bare soil
and/or sparsely vegetated surfaces) and over vegetatedpixels belonging
to category 1 (as defined in the section above), i.e. pixels, where the
sensitivity of the SMOS observations to the surface effects was not
negligible. MODIS LAI data were used to decouple the vegetation and
the surface roughness effects in the TR parameter as proposed by
Wang et al. (2015). To compute the Hr value of each pixel, the main
cases 1 and 2 were considered following the values of the MODIS LAI
over the pixel in 2011 (a threshold value of LAI equal to 0.5 m2 m−2

was considered in this study).

• Pixels corresponding to case 1 (bare and/or sparsely vegetated
surfaces):
For case 1, a direct inversion ofHrwas carried out over the time period
when LAI b 0.5 m2 m−2, assuming vegetation effects could be
neglected (TR ≈ Hr/2). So, if at least forty 2-parameter (SM and TR)
retrievals could bemade for dates corresponding to LAI b 0.5m2m−2,
2,we considered thatHrwas equal to the average values of 2× TR over
the retrieval period.

• Pixels corresponding to both case 2 & category 1 (vegetated surfaces
where the SMOS sensitivity to the surface effects cannot be
neglected):
In this case, the vegetation effects (parameterized by the τnad
parameter) could not be neglected. To decouple the vegetation effects
(through the τnad parameter) and the roughness effects (through the
Hr parameter), we considered the approach developed byWang et al.
(2015). Wang et al. (2015) considered that the vegetation optical
depth could be linearly related to the LAI index. This assumption
was used in the SMOS L2 operational algorithm and analyzed by
Wigneron et al. (2007) and Lawrence et al. (2014). Note that this
linear assumption is an approximation. For example, over regions of
crops in the USA, Lawrence et al. (2014) showed that τnad and LAI
values started to increase at the same time but with τnad reaching a
peak later than LAI. This behavior can decrease the linear link between
LAI and τnad. However, the linear link between LAI and τnad is a good
approximation in general and, assuming roughness effects to be
constant over a given pixel, we assumed that TR could be expressed
as a function of LAI over each pixel as:

TR ¼ a2LAIþ b2 ð10Þ

where a2 is the slope parameter and b2 the intercept parameter. In this
case, the Hr parameter can be related to the intercept parameter (b2) of
the regression equation (Eq. (10)) (we assumed that, at the intercept,
corresponding to LAI = 0, the optical depth τnad = 0). If τnad can be
neglected for LAI = 0, Hr can be written as: Hr=2 b2. Note that this
method was applied only if the correlation value (r) between LAI and
TR was higher than 0.4 and if a significant p-value (p-value b 0.01)
associated with the regression equation was obtained.

4. Results

This section is divided into three parts: the first concerns the SM and
TR retrievals obtained during 2011. The second concerns the analysis of
the SMOS sensitivity to the surface effects and the third focuses on the
mapping of the soil roughness effects.

4.1. SM and TR retrievals

Based on the approach defined above (see Fig. 3), a map
distinguishing pixels corresponding to case 1 (bare and/or sparsely
vegetated surfaces, corresponding to values of LAI b 0.5 m2 m−2 during
at least 40 days) and case 2 (when conditions for case 1 were not
fulfilled, corresponding roughly to vegetated surfaces) is shown in
Fig. 4. At a global scale, 39% of the pixels correspond to case 1 and 61%
to case 2.

The 2-parameter retrievals of SM and TR retrievals were carried out
globally. For case 1, direct values of Hr were derived from the retrieved



Fig. 4. Spatial distribution of the bare and/or sparsely vegetated surfaces (red), corresponding to case 1, and vegetated surfaces (blue), corresponding to case 2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5.Mean values of SM (top) and TR (bottom) retrievals obtained during 2011.
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values of TR. For case 2, the SM retrievals were used to classify the pixels
in categories 1 & 2.

Fig. 5 shows the mean of SM and TR retrievals obtained by combin-
ing the roughness and vegetation effects during the year 2011 for the
whole globe. Pixels where the RFI probability was higher than 20%
were filtered out in these maps. Mean SM retrieval values during 2011
range from 0 to 0.60 m3 m−3. The drier part of the globe is located in
the north and south of Africa and the middle of Australia. To a lesser
extent, the eastern part of North America, the southern part of South
America and the Eurasian and mid-Asian continent are also dry with
mean SM values ranging between 0.05 m3 m−3 and 0.15 m3 m−3. The
wetter part of the globe corresponds to the Amazon area, the northern
regions of Europe, the south of continental Asia and the Indonesian
islands. The median value of SM for the whole globe during 2011 is
0.175 m3 m−3 and the standard deviation of SM is equal to
0.047 m3 m−3. These results have already been evaluated against in
situ data in previous studies (Fernandez-Moran et al., 2015; Parrens,
Wigneron et al., 2014).

Themean value of the combined roughness–vegetation (TR) param-
eter ranges between 0 and 0.7 over the whole globe. The higher values
of TR can be observed over the north of Russia, the middle of South
America, Africa and Alaska. Conversely, the lower values of TR can be
seen over the African deserts, the middle of Australia and Eurasian
Fig. 6. Global maps of the regression coefficients computed from Eq. (9). This regression was p
computation of the regression coefficients done in thisfigure concerns only thepixels considered
figure legend, the reader is referred to the web version of this article.)
and middle Asia. The median and the standard deviation values of TR
retrievals for all the continents during 2011 are 0.22 and 0.13, respec-
tively. The major rivers are particularly visible in themean TR retrievals
over the Amazon and Congo basins.
4.2. Mask of SMOS sensitivity to the surface effects

The regression coefficients (a1 and b1) over the globe obtained with
Eq. (9) between SM and TB at H polarization at 40∘±5∘ of angle of
incidence are shown in Fig. 6. The slope parameter a1 ranges from
−0.0151 m3 m−3/K to 0.0055 m3 m−3/K. As explained in the previous
section, a positive value of the a1 parameter is a sign indicating very low
sensitivity of the SMOS observations to the surface effects. At H-pol and
at 40° of incidence, we can observe positive values of a1 over dense
tropical forests and in northern regions. For example, positive values
of a1 were found in the Amazon and Congo forests, indicating that
SMOS sensitivity to the surface effects was very low. As for the b1 pa-
rameter of the regression, values range from 0 m3 m−3 to 4.4 m3 m−3.
Note that the white areas correspond to pixels where no computations
were done due to a high RFI probability (RFI probability higher than
20%). The same regression equations between TB and SM were applied
for the other angles of incidence and the H and V polarizations. Similar
erformed with TB values at H polarization and angle of incidence of 42∘±5∘. Note that the
as “vegetated” (pixels in blue in Fig. 4). (For interpretation of the references to color in this



Fig. 7.Globalmaps of thepixelswhere SMOSTB is sensitive to the surface effects (yellow), corresponding to case 1 and category 1, and areaswhere the sensitivity of SMOSTB to the surface
effects is very low or negligible, corresponding to category 2 (green). Masked areas in white correspond to pixels with an RFI probability higher than 20%. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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results to those found at H-pol and θ=40∘±5∘ were obtained (results
not shown).

Fig. 7 presents the global map showing the pixels where (i) the
SMOS observations are sensitive to the surface effects, i.e. pixels corre-
spond either to case 1 (bare and/or sparsely vegetated surfaces) or to
category 1 (vegetated pixels where a sensitivity of TB to SM could be
revealed); and (ii) pixels where SMOS sensitivity to the surface effects
is very low. The latter condition corresponds to category 2 or to pixels
where the correlation value between SM and TB is lower than 0.4 or
the p-value is higher than 0.01. RFI effects (where the RFI probability
is higher than 20%) were filtered out in these maps and showed as
blank areas. It was found that the SMOS observations were sensitive
to the surface effects over 87% of the continental surface of the globe.
SMOS sensitivity to the ground surfaces is very low for 13% of the
globe, in particular over equatorial forests and regions of tundra.
Fig. 8. SMOS sensitivity to the surface effects with respect to themajor vegetation biomes as defi
reader is referred to the web version of this article.)
A more detailed analysis of the pixels where SMOS was sensitive to
the surface effects was carried out with respect to the vegetation type.
Fig. 8 shows the percentage of pixels where the SMOS observations
were found to be sensitive to the surface effects (red bars) and where
SMOS sensitivity was low (black bars) with respect to the vegetation
types as defined by Dirmeyer et al. (2006). The sensitivity of the SMOS
observations (TB) to the surface effectswas found to dependon the veg-
etation type. For example, over broadleaf evergreen forests, the SMOS
observations were sensitive to the surface effects for only 50% of the
pixels covered by this vegetation type. Conversely, over wooded C4
grasslands, SMOS was sensitive to the surface effects for 95% of the
pixels. The SMOS observations were sensitive to the surface effects for
more than 80% of the pixels over (i) broadleaf deciduous forest
and woodland, (ii) coniferous forest and woodland, (iii) wooded C4
grasslands, (iv) tundra and (v) cultivation. They were sensitive to the
ned in Dirmeyer et al. (2006). (For interpretation of the references to color in the text, the
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surface effects over 55%–75% of the pixels for the (i) mixed coniferous
and broadleaf and deciduous forest andwoodland and (ii) high latitude
deciduous forest and woodland. SMOS observations were also sensitive
to the soil surfaces over 100% of the pixels for deserts, bare soils and
shrub vegetation types, which are not represented in Fig. 8.

This mask (Fig. 7) is used in the following section to filter out all the
pixels where sensitivity of TB to the surface effects is very low.

4.3. Surface roughness effects as seen by SMOS

Over pixels where the SMOS TB data were found to be sensitive to
the surface effects (case 1 or category 1), the value of the Hr parameter
was computed as summarized in Fig. 3. For case 1, direct values of Hr

were derived from the retrieved values of TR. For pixels corresponding
to both case 2 and category 1, the values of Hr were computed from
the value of the intercept of the relationship between TR and LAI. For
pixels corresponding to both case 2 and category 2, no retrievals could
be made and the pixel was considered as unclassified.

Fig. 9 shows the temporal correlation values (correlation coefficient,
r) obtained between the MODIS LAI data and the TR retrievals during
2011. The value of the correlation coefficient between LAI and TR over
the globe follows a normal distribution with a mean value equal to
0.42 and a standard deviation value equal to 0.15. The minimum value
of r is equal to −0.87 whereas the maximum value is 0.81. Over the
globe, a negative correlation between LAI and TR is obtained over 11%
of the pixels. For these pixels, the MODIS LAI data present a dynamic
seasonal evolution whereas the TR retrievals do not present a seasonal
cycle. Low correlation values (0 b r b 0.4) are obtained over 18% of the
pixels. These pixels are generally composed of different vegetation
types: cultivated land, tundra, shrubs and bare ground, wooded C4
grassland and forests (coniferous and deciduous). Higher correlation
values (0.4 br b 0.81) between LAI and TR retrievals are obtained over
the eastern part of North America, the eastern part of South America,
the south of the Sahara desert, the south of Africa, the east of the
Congo forest, the west coast of Australia and the eastern part of
Australia.

The method used to compute the global map of the roughness pa-
rameter (Hr) is illustrated in Fig. 10. In Fig. 10a the method was used
for bare or sparsely vegetated surfaces (corresponding to case 1) over
a pixel located in the Sahara desert (24.08°N,8.30°E). More than forty
TB observation data for LAI lower than 0.5 m2 m−2 were available, so
the mean of TR retrievals could be computed and set equal to Hr/2.
The value obtained for Hr is equal to 0.024. Fig.10b illustrates the
method developed for vegetated surfaces (category 1). This figure
shows the TR retrievals as a function of LAI data for a pixel located in
Fig. 9. Temporal correlation (r) values obtained betw
the eastern part of the US (40.98°N, 89.80°W). The correlation value
and root mean square value (RMSE) between TR and LAI values are
0.81 and 1.49, respectively. The slope parameter of this regression is
equal to 0.082 m2 m−2 and the intercept, corresponding to the value
of Hr/2, is equal to 0.14.

Using the same approach as the one illustrated above for the two
selected pixels, the values of Hr were estimated at global scale for all
pixels corresponding to case 1 and to category 1 and are shown in
Fig. 11. No discontinuities in the Hr values can be noted in the global
map between the two different approaches considered for case 1 and
for category 1. In Fig. 11, it can be seen that the lowest values of Hr

were obtained in deserts or in low vegetated regions (i.e. Sahara desert,
Australia, southern Africa). Note that at C-band, Pellarin et al. (2009)
found a wider diversity of soil roughness effects due to topography
(dunes, flat areas, plains) in Sahel and Sahara areas. In the results
obtained at L-band (Fig. 11), it seems that the topographic effects do
not lead to a high variability of Hr in these regions. Conversely, the
highest values ofHrwere obtained in forested areas and in the northern
regions of the globe. These results are in accordancewith those found by
Wang et al. (2015) at C-band.

The values of Hr were analyzed according to the different types
of vegetation. The average value ofHr computed for each type of vegeta-
tion is shown in Fig. 12. For each vegetation biome, at least 4910 pixels
were considered to compute the average. The mean value of Hr ranges
between 0.14 (lowest values obtained over deserts) and 0.39 (highest
values obtained over high latitude deciduous forest and woodland). It
can be seen that Hr is generally higher over forest biomes (broadleaf
evergreen forest, broadleaf deciduous forest, mixed coniferous forest
and coniferous forest), with values ranging from 0.32 to 0.39. Presently,
the higher Hr values obtained over forest biomes cannot be totally
explained. Future investigations are needed. In the literature, Hr values
over forest biomes are close to 0.3 (Ferrazzoli, Guerriero, & Wigneron,
2002; Rahmoune et al., 2014). In our study, the retrieved Hr values
range between 0.32 and 0.39 and are consistent with the literature. It
is likely that the higher values of Hr can be explained by the presence
of ground litter under the forest canopy. The litter tends to increase
the Hr value, which acts as an effective parameter accounting for both
soil roughness and ground litter (Grant et al., 2007, 2008; Saleh et al.,
2006). Lower values of Hr were obtained over wooded C4 grassland,
tundra and cultivated areas. Over these biomes, the Hr values range
between 0.20 and 0.23. The lowest values of Hr can be noted over
shrubs, bare soils and deserts (with values around 0.14–0.16).

As shown before, the value ofHr depends on the vegetation type but
some other factors can also influence the Hr values. Because of the
coarse spatial resolution (25 km × 25 km) of the SMOS microwave
een MODIS LAI data and TR retrievals for 2011.



Fig. 10. Illustration of themethod described in Section 3 and used to compute the soil roughnessmap for (a) case 1 (bare and/or sparsely vegetated surfaces): TR retrievals obtained for one
pixel (24.08°N,8.30°E) during the full year 2011. The red line represents themean of the TR values and corresponds to theHr value (b) case 2 and category 1 (vegetated pixel): Scatter plot
between TR retrievals and LAI MODIS data for one pixel (40.98°N,89.80°W). For vegetated surfaces, the Hr value corresponds to the intercept of the regression. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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observations at L-band, the measured signal can be affected by many
features, such as the topography and the percentage of forest and
nominal fraction in each pixel. In this study, we analyzed the value of
Hr with respect to the FFO (percentage of the forest fraction present in
one SMOS pixel), FNO (percentage of the nominal fraction present in
one SMOS pixel), the mean LAI, the altitude and the topography slopes.
At global scale, without making distinction between biomes, the spatial
correlations between Hr values and FFO, FNO, LAI, altitude and the
topography slopes were equal to 0.58, −0.52, 0.56, 0.06 and 0.27,
respectively. So, at global scale, it seems that the values of Hr can be
explained mainly by the presence of vegetation (parameterized here
by FFO, FNO and LAI), while the effects of the altitude and the topogra-
phy slopes are very small.

Fig. 13 shows the correlation values (r) between Hr and FFO, FNO,
mean LAI, altitude and the topography slopes according to the vegeta-
tion biomes. Concerning the spatial correlation between Hr and FFO,
the highest correlation (r=0.58) values are obtained for the vegetation
biomes composed of wooded C4 grassland while the lowest correlation
value (r=0.15) is obtained over the desert. For the correlation between
FNO and Hr, all the correlation values are negative: an increase in the
FNO percentage leads to a decrease in the Hr value. The highest correla-
tion value in absolute terms (r=−0.57) was obtained for the wooded
C4 grassland biome. A very low correlation of the values of Hr and FNO
(−0.2 b r b 0) was found over three biomes: (i) mixed coniferous and
Fig. 11. Global roughness (Hr) map at L-band e
broadleaf and deciduous forest and woodland, (ii) high latitude
deciduous forest and woodland and (iii) tundra. Correlation (r) values
were also computed between LAI and Hr. The three highest values of
correlation (r b 00.4) corresponded to (i) wooded C4 grassland,
(ii) tundra and (iii) broadleaf evergreen forest (in descending order).
Very low correlation values (0 b r b 0.2) were obtained for shrubs and
bare ground, and mixed coniferous and broadleaf and deciduous forest
and woodland. Results are less contrasted for the correlation between
the values of Hr and altitude. For all the vegetation biomes, the correla-
tion value is lower than 0.4 except for the desert, where it is equal to
0.42. Higher correlation values were obtained when the correlation
values were calculated between Hr values and the topography slopes.
The highest correlation values (r N 0.4) were obtained for shrubs and
bare ground, tundra and deserts.

5. Discussion

In this study, several assumptions were made and theymay have an
impact on the retrieved values of Hr. They are discussed in the following
paragraphs. As for vegetation, it was assumed that the effective scatter-
ing albedo (ω) of all vegetation types is equal to zero and the ttp param-
eters were set equal to zero. The latter hypothesis corresponds to an
assumption of isotropic extinction effects by the canopy, which is
often made in the literature. The chosen value of omega (ω=0) in
stimated from the SMOS data over 2011.



Fig. 12. Mean Hr values obtained at global scale with respect to the major vegetation
biomes as defined in Dirmeyer et al. (2006).
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this studymay have too an impact on the retrieved values ofHr. Howev-
er we expect that this impact is relatively small, as values of ω are
generally found to be close to zero in the literature: ω values are close
to zero for low vegetation types (ω≈0−0.03), if we except some
specific crop types as corn, and close to 0.06 for forests. Moreover,
Fig. 13. Correlation (r) values between the values ofHr and FFO, FNO, LAI, altitude and topograp
Konings et al. (2016) found that the impact of roughness was relatively
lowon the estimated value ofω (we expect the reverse is true). Present-
ly, even if we expect this will bemodified in the near future, the value of
ω is set equal to zero over low vegetation and equal to 0.06 over forests
in the operational SMOS algorithm. So the hypothesismade in this study
is consistent with what is done in the SMOS algorithm, to the exception
of forest canopies. Future works should attempt to improve the first
results obtained in this study, by better accounting for vegetation
scattering effects. This is a difficult task considering that the SMOSpixels
generally include a variety of vegetation covers whose scattering prop-
erties may be very different and are not widely known to date.

As for soils, theQr andNrpparameterswere set equal, respectively, to
0 and−1 in this study. Using Nrp =−1 (i.e. combining vegetation and
soil roughness effects in one single parameter) was recently found to be
one of the best approaches in inversion studies (Fernandez-Moran et al.,
2015; Parrens, Wigneron et al., 2014). The use of Qr = 0 was generally
made at L-band in the literature. However, strictly speaking, Qr should
not be equal to zero (Lawrence et al., 2014) especially in hilly terrain.
However, the use of Qr = 0, generally leads to very good results in
inversion problems as the effects of Qr can be partially accounted for
by the value Hr (Lawrence et al., 2014). Moreover, presently, there is
no clear method to calibrate Qr and the assumption Qr = 0, is made
too in the operational SMOS algorithm.

Themethodology presented in this study allowed us to decouple the
effects of vegetation (τnad) and soil roughness (Hr). So, the optical depth
(τnad) can be derived from the retrieved value of TR, by subtracting
roughness effects (Eq. (6)), assuming, as done in this study, that these
roughness effects are constant over the year. The mean value of τnad
over the continental surfaces is shown in Fig. 14. This figurewas derived
from Fig. 5, by subtracting the roughness effects (shown in Fig. 11 using
Eq. (6)). There is no referencemap of vegetation optical depth at L-band
that can be used to check whether the use of the roughness map
(Fig. 11) allowed to us to produce more accurate and/or realistic maps
of vegetation optical depth. However, at global scale, considering all
the vegetation biomes, the spatial correlation between LAI and TR was
equal to 0.68. By computing τnad from TR, the spatial correlation
between τnad and LAI slightly increased and was equal to 0.70. This
result is going in the right direction.

As for vegetation, another key assumptionwasmade in this study as
we assumed that the vegetation optical depth (τnad) is linearly related
to LAI. However, Lawrence et al. (2014) found that τnad values generally
peaked later thanMODIS LAI values over crop zones of the USA, with an
estimated time difference of about 19 days. This can be explained by the
fact τnad accounts for the vegetationwater content of thewhole canopy,
including fruits which have a late development, whereas LAI only
accounts for leaf development. Note that this delayed peak in τnad
(vs. LAI) cannot be generalized to all canopies as the reverse was
found, for instance, by Fernandez-Moran et al. (2015) over vineyards.
The assumption of a linear relationship between τnad and LAI
was found by Wigneron et al. (2007) to be relatively correct during
most of the vegetation growth over crops and we expect that the
hy slopes with respect to themajor vegetation biomes as defined in Dirmeyer et al. (2006).



Fig. 14. Global vegetation optical depth (τnad) map obtained by computing τnad from the TR parameter (given in Fig. 5) using the global roughness map of Hr (given in Fig. 11).
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computation of the intercept of this linear relationship shows little sen-
sitivity to non-linear effects between τnad and LAI at the end of the veg-
etation growth.

6. Conclusion

A first attempt to map the surface effects as seen in the SMOS obser-
vations has been presented in this study. The general approach is
relatively similar to the one developed by Wang et al. (2015) from
observations of AMSR-E at C-band. In both studies (Wang's and the
present one), the main general idea was to retrieve a combined vegeta-
tion roughness parameter (referred to as TR in this study) and then to
decouple the effects of vegetation and roughness using information on
the seasonal variations in vegetation from MODIS LAI observations.

However, there are several differences in the general methodology
developed in this study. Firstly, we distinguished pixels corresponding
to bare soil or sparsely vegetated surfaces (case 1) and vegetated pixels
(case 2). Over pixels corresponding to case 1, the TR parameter
accounted mainly for roughness effects (the vegetation optical thick-
ness was assumed to be negligible) and the computation of Hr was
direct (Hr ~ 2 × TR).

Secondly, over vegetated surfaces (case 2), wemasked pixels where
the sensitivity of the SMOS TB observations to the surface effects was
found to be very low. These pixels represent almost 13% of the land
surfaces. This step was performed to filter out pixels where the vegeta-
tion density was so high that the impact of the surface effects on the
SMOS TB observations was almost negligible.

Thirdly, the retrievals of TR from the AMSRE and the SMOS TB data
were not carried out in the same way. For the AMSR-E data, TR was
found from an analytical formulation computed from mono-angular
and dual-polarized TB observations but, in the present study, simulta-
neous 2-parameter retrievals of TR and SM were made from multi-
angular and dual-polarized SMOS observations.

Moreover, the main approximations made in this study concerning
vegetation effects, namely considering the effective scattering albedo
as negligible and assuming the vegetation optical depth to be linearly
related to LAI, are often made at L-band, while they are more question-
able at C-band.

The Hr values found in this study at L-band are generally in agree-
mentwith the values found at local scale in the literature. Lowest values
(Hr ~ 0.14–0.23) were obtained over shrubs and bare ground, cultivated
land, wooded C4 grassland, tundra and desert (Fig. 12). This is in
agreement with studies made over crop fields and low vegetation
covers (Cano et al., 2010; Escorihuela et al., 2007; Lawrence et al.,
2013; Mo et al., 1982; Saleh et al., 2007; Schlenz et al., 2012; Wang
et al., 1982;Wigneron et al., 2001, 2007, 2011, 2012 and among others).
For instance, the default value of Hr considered in the SMOS algorithm
over low vegetation covers is 0.1. Higher values were obtained over
forests (Hr ~ 0.32–0.39). This is also in agreement with the literature.
For instance, the default value of Hr considered in the SMOS algorithm
over forests is 0.3 (Ferrazzoli et al., 2002). It is likely that the higher
values of the Hr parameter over forests can be related to the effects
of litter, which are implicitly accounted for by the Hr parameter
(Grant et al., 2007; Grant et al., 2008; Saleh et al., 2006). The high corre-
lation computed between Hr and LAI over wooded C4 grassland could
also be an indirect effect related to litter.

As confirmed in this study theHr parameter computed is an effective
parameter that accounts for roughness effects, litter and also topogra-
phy. In particular, significant correlation values and correlation coeffi-
cients N0.4 were computed between the values of Hr and topography
slopes over tundra, desert, shrubs and bare ground.

Future studies need to be carried out to evaluate how the soil rough-
ness maps at L-band computed in this study could be useful to improve
the soil moisture retrievals from the L-band SMOS and SMAP sensors.
Recent studies have shown that the use of 2-parameter retrievals of
SM and TR (combining vegetation and soil roughness effects) is very
efficient to estimate SM from multi-angular observations (Parrens,
Wigneron et al., 2014; Rodriguez-Fernandez et al., 2014). In that case,
no a priori estimates of Hr are required in the inversion process of SM
from the SMOS observations. Moreover, contrary to what is assumed
here, it is not necessary to consider that the roughness parameter Hr is
constant over time. Nevertheless, the values of Hr computed in this
study can be useful to compute the vegetation optical depth τnad from
the combined vegetation–roughness TR parameter. The interest of the
maps ofHr plotted in this study also has to be evaluated for SM retrievals
computed from SMAP observations. Presently, in the SMAP algorithm
(ONeill, Chan, Njoku, Jackson, & Bindlish, 2012) the values of the Hr

parameter are computed as a function of the main vegetation catego-
ries, but these tables were mainly established from TB observations
made from tower-based or airborne sensors, which could not be
representative of the large footprints of space-borne TB observations.
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