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1 BACKGROUND OF THE DOCUMENT 

1.1 EXECUTIVE SUMMARY 

This ATBD (Algorithm Theoretical Based Document) describes the proposed algorithm for Level 3 

vegetation products derived at the global scale from AVHRR LTDR (Long Term Data Record) version 

4 reflectance 1981-2019 series at 0.05° resolution (≈5.6km² at the equator) and every 10 days, with 

justification of the choices made. The considered products are the following set of biophysical 

variables: LAI and FAPAR that are essential climate variables (ECVs) as recognized by international 

organizations such as GCOS and GTOS. In addition, the FCOVER variable will be also generated 

since it corresponds to specific needs for some users.  

The objective was to derive LAI, FAPAR and FCOVER variables as consistent as possible with the 

products derived from SPOT-VEGETATION and PROBA-V data in the framework of Copernicus 

Global Land Service (CGLS): the GEOV2-CGLS products (Baret  et al. 2014; Verger et al. 2014). 

The same algorithm with minor adaptations to the specificities of the two datasets will be used for 

the generation of the two sets of GEOV2 products. The proposed methodology consists mainly in 

training neural networks (NNT) over existing CYCLOPES and MODIS products. Years 2003-2007 

with concurrent CYCLOPES, MODIS and LTDR data available were used for training the NNT. The 

trained NNT were used to estimate GEOV2 LAI, FAPAR and FCOVER products from AVHRR 

normalized reflectances in the red and near infrared bands as provided in LTDR v4 series (Vermote 

and Claverie 2013; Vermote et al. 2010) at the daily time step, i.e. each time a AVHRR observation 

is available. Then, a specific gap filing and smoothing procedure was applied to generate smooth 

and continuous time series of products at the dekadal (10-day) time step. Finally, qualitative and 

quantitative quality indicators were associated to the products. 

The comparison of the resulting products called GEOV2-AVHRR with the current version of 

Copernicus GEOV2-CGLS time series derived from VEGETATION and PROBA-V data 

demonstrates that they are very consistent, providing continuous time series of observations of LAI, 

FAPAR and FCOVER globally for the 1981-2019 time period, with continuation after 2019 with 

AVHRR data. 

  

1.2 SCOPE AND OBJECTIVES 

The GEOV2-AVHRR product is a global map of biophysical variables (FAPAR, LAI and FCOVER) 

derived from AVHRR LTDR data for the period 1981-2019 at 0.05° resolution (≈5.6km² at the 

equator) every ten days. 

A first version of the product, called GEOV1-AVHRR, was developed from AVHRR LTDR version 3 

data during the FP7 Geoland 2 project. The algorithm theoretical baseline description (ATBD) of this 

first product was produced by INRAE with the support of the CREAF laboratory (Baret et al. 2011). 

CNES developed the processing line and produced the first version of the product. 

This first version was compared with the GEOV1-CGLS product prototyped by INRAE and CREAF. 

Some limitations were identified in GEOV1-AHRR product that needed to be corrected. 
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After this first analysis, it was decided to adapt the GEOV2-CGLS algorithm to the characteristics of 

the AVHRR products to generate GEOV2-AVHRR products.  

The objective of this document is to provide a detailed description and justification of the algorithm 

proposed for version 2.0 of the algorithm based on daily AVHRR LTDR version 4 data to complement 

in a consistent way the existing GEOV2-CGLS products derived from the VEGETATION and 

PROBA-V sensors.  

A quality assessment of the GEOV2-AVHRR products following CEOS/LPV recommendations is 

presented in [THEIA-RP-44-0281-CREAF]. 

 

1.3 CONTENT OF THE DOCUMENT 

This ATBD document provides a description of the GEOV2-AVHRR algorithm including: 

 The definition of the proposed products. 

 The outline of the algorithm. 

 A brief description of the AVHRR data from which the products will be derived. 

 The inputs required and outputs provided by the algorithm 

 The retrieval technique used. Neural network techniques will constitute the core of the 

operational algorithm, completed with dedicated data filtering and smoothing. A 

description of the quality indicators, including both qualitative and quantitative descriptors. 

 

1.4 RELATED DOCUMENTS 

1.4.1 Applicable documents 

Document ID Descriptor 

CNES contract Nº140570/00 CNES contracts scientific support of CREAF for the 

development and validation of the GEOV2-AVHRR 

products 

THEIA-CT-44-0163-CNES Scientific support requested 

1.4.2 Output 

Document ID Descriptor 

THEIA-SB-44-369-CNES  Product User Manual summarizing all information about 

GEOV2-AVHRR products  

THEIA-RP-44-0281-CREAF Validation Report describing the results of the scientific 

quality assessment of the GEOV2-AVHRR products 
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2 METHODOLOGY DESCRIPTION 

2.1 OVERVIEW 

The considered products correspond to actual vegetation biophysical variables that are defined 
below. 

2.1.1 FAPAR 

FAPAR corresponds to the fraction of photosynthetically active radiation absorbed by the canopy. 

The FAPAR value results directly from the radiative transfer model in the canopy which is computed 

instantaneously. It depends on canopy structure, vegetation element optical properties and 

illumination conditions. FAPAR is very useful as input to a number of primary productivity models 

based on simple efficiency considerations (Prince 1991). Most of the primary productivity models 

using this efficiency concept are running at the daily time step. Consequently, the product definition 

should correspond to the daily integrated FAPAR value that can be approached by computation of 

the clear sky daily integrated FAPAR values as well as the FAPAR value computed for diffuse 

conditions. To improve the consistency with other FAPAR products that are sometimes considering 

the instantaneous FAPAR value at the time of the satellite overpass under clear sky conditions (e.g. 

MODIS), a study investigated the differences between alternative FAPAR definitions (Baret et al. 

2003). Results show that the instantaneous FAPAR value at 10:00 (or 14:00) solar time is very close 

to the daily integrated value under clear sky conditions. To keep a higher consistency with the 

FAPAR definition used in the CYCLOPES, and MODIS products, the instantaneous FAPAR value 

at 10:00 solar time under clear sky conditions (equivalent to black-sky conditions as defined also for 

albedo) was used.  

FAPAR is relatively linearly related to reflectance values, and will be little sensitive to scaling issues. 

Note also that the FAPAR refers only to the green parts of the canopy. 

2.1.2 Cover fraction (FCOVER) 

It corresponds to one minus the gap fraction for nadir direction. FCOVER is used to separate 

vegetation and soil in energy balance processes, including temperature and evapotranspiration. It is 

computed from the leaf area index and other canopy structural variables and does not depend on 

variables such as the geometry of illumination as compared to FAPAR. For this reason, it is a very 

good candidate for the replacement of classical vegetation indices for the monitoring of green 

vegetation. Because of its quasi-linear relationship with reflectances, FCOVER will be only 

marginally scale dependent (Weiss et al. 2000). Note that similarly to LAI and FAPAR, only the green 

elements will be considered. 

2.1.3 Leaf Area Index (LAI) 

LAI is defined as half the developed area of photosynthetically active elements of the vegetation per 

unit horizontal ground area. It determines the size of the interface for exchange of energy (including 

radiation) and mass between the canopy and the atmosphere. This is an intrinsic canopy primary 
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variable that should not depend on observation conditions. LAI is strongly non linearly related to 

reflectance. Therefore, its estimation from remote sensing observations will be scale dependent 

(Garrigues et al. 2006; Weiss et al. 2000). Note that vegetation LAI as estimated from remote sensing 

will include all the green contributors such as the understory when existing under forests canopies. 

However, except when using directional observations (Chen et al. 2005), LAI is not directly 

accessible from remote sensing observations due to the possible heterogeneity in leaf distribution 

within the canopy volume. Therefore, remote sensing observations are rather sensitive to the 

‘effective’ leaf area index, i.e. the value that provides the same diffuse gap fraction while assuming 

a random distribution of leaves. The difference between the actual LAI and the effective LAI may be 

quantified by the clumping index (Chen et al. 2005) that roughly varies between 0.5 (very clumped 

canopies) and 1.0 (randomly distributed leaves). Note that similarly to the other variables, the 

retrieved LAI is mainly corresponding to the green element: the correct term to be used would be 

GAI (Green Area Index) although we propose to still use LAI for the sake of simplicity. 

 

2.2 THE RETRIEVAL ALGORITHM 

2.2.1 Basic underlying assumptions 

The objective is to develop an algorithm dedicated to the estimation of LAI, FAPAR and FCOVER 

from the AVHRR series of observations. The algorithm should provide improved products as 

compared to GEOV1-AVHRR although derived from the same sensors AVHRR/NOAA observations. 

These LAI, FAPAR and FCOVER products, called here GEOV2-AVHRR, aims to be consistent with 

GEOV2-CGLS products to ensure continuity. GEOV2-AVHRR should have the same temporal 

sampling frequency of 10 days. GEOV2-AVHRR capitalizes on the development and validation of 

already existing CYCLOPES and MODIS products, and the use of neural networks. The basic 

underlying assumption is that a strong link exists between AVHRR observations and the FUSED 

products resulting from the fusion of CYCLOPES and MODIS. Products should also be associated 

with quality flags as well as quantified uncertainties.  

2.2.2 Outline 

The GEOV2-AVHRR algorithm for the estimation of LAI, FAPAR, and FCOVER global time series 

(1981-2019) from AVHRR data consists of two main steps (Figure 1): 

1. Neural networks are used to derive instantaneous estimates from LTRD AVHRR V4.0 top of 

the canopy directionally normalized reflectances in the red and near infrared spectral bands 

(Branch A, Figure 1). 

2. Filtering, smoothing, gap filling and temporal compositing techniques are applied to ensure 

consistency and continuity of the LAI, FAPAR and FCOVER time course every 10 days 

(Branch B,.Figure 1). 
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Figure 1: Flow chart the GEOV2-AVHRR retrieval algorithm. The algorithm starts from the daily LTDR 

AVHRR daily reflectance products. Neural networks (NNTs) are used first to derive instantaneous 

estimates from top of the canopy directionally normalized TOC-r reflectances in the red and near 

infrared spectral bands (Branch A). The output is the instantaneous first guess of the products. 

Then, temporal techniques are applied to generate the final GEOV2-AVHRR products at 10-day step 

(Branch B). The inputs of this second step are the daily estimates, the sun zenith angle of the 

observations, the latitude, a climatology of LAI, FAPAR and FCOVER (GEOCLIM), and the Evergreen 

Broadleaf Forest (EBF) and Bare Soil (BS) landcover classes derived from the climatology.  

 

2.2.2.1 Retrieval of instantaneous LAI, FAPAR and FCOVER estimates (Branch A) 

The Branch A is described in Figure 2. It mainly corresponds to a first estimate of instantaneous 

products (called here Inst. Product1). 

1. Spectral harmonization of AVHRR reflectances (1A) 

2. Outlier rejection based on inputs (2A). AVHRR data associated with bad quality flags as 

well as outside the definition domain used to train the neural networks are removed. This 

should allow rejecting cloud/snow/water contaminated values.  

3. Deriving daily estimates of LAI, FAPAR and FCOVER using neural networks (3A). The 

AVHRR reflectances are transformed into instantaneous products using dedicated neural 

networks trained over FUSED estimates from CYCLOPES and MODIS products. Inputs are 

the spectrally corrected AVHRR reflectance values in the red and near infrared (and the 

cosine of the sun zenith angle at 10h00 only for FAPAR). This will provide consistent time 

AVHRR TOC-r

10d LAI, FAPAR, FCover

Filtering,
Smoothing, 
Gap Filling, 

Compositing

Latitude

Sun zenith
angle

EBF 
or 

BS?
GEOCLIM

NNTsSpectral 
Coef.

NNT coef. 

Definition domain

1d LAI, FAPAR, FCover



THEIA-SP-44-0207-CREAF  

GEOV2-AVHRR: LAI, FAPAR and FCOVER from LTDR AVHRR        

 

Document-No. THEIA_ATBD_GEOV2_AVHRR  

Issue:     I2.50 Date: 24.09.2020  Page: 15 of 51 

 

series of daily products. The neural network training process was mainly consisting in the 

two following main steps: 

a. The training database was filtered to improve the reliability of the values. This allows 

defining the definition domain, i.e. the region in the red and near infrared reflectance 

plan where valid pixels are expected to be located. 

b. Training the network, i.e. adjusting network architecture and tuning the synaptic 

coefficients. 

4. Outlier rejection based on output values (4A): outputs out of the expected physical range 

are discarded. 

5. Preparation of the climatology (5A). Knowledge of the climatology as background 

information is important for the processing of the time series. A climatology was generated 

at the spatial resolution of AVHRR data based on GEOCLIM, a climatology of LAI, FAPAR 

and FCOVER derived from GEOV1/VGT time series (Annex 1).  

 

  

Figure 2: Flow chart describing the data preparation process (Branch A). 

 

2.2.2.2 Processing the time series (Branch B)  

1. Outlier rejection of data for EBF and high northern latitudes (1B). 

2. Temporal smoothing and gap filling (2B) The temporal smoothing and gap filling (TSGF) 

method (Verger et al. 2011) is applied, i.e. a local polynomial fitting within an adaptive 
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window, with (large) gaps filled with the climatology values and a 2 iterations linear 

interpolation process. 

3. Outlier rejection (3B). Data which are substantially different from the TSGF series are 

considered as outliers and thus rejected. 

4. CACAO: Consistent Adjustment of the Climatology to Actual Observations (4B). The 

climatology is first decomposed into sub-seasons defined by the minimum and maximum 

seasonal values observed in the climatology. For each sub-season, the climatology is then 

adjusted to the available data allowing time shift and magnitude flexibility (Verger et al. 2013). 

The weighted average values are finally computed over the transition periods (where sub-

seasons overlap) to get continuous and smooth products. 

5. Generation of the GEOV2-AVHRR products using TSGF (5B) for each dekad with the 

filtered data and CACAO estimates as inputs. 

 

  

Figure 3: Flow chart describing the processing of the time series (Branch B). Daily Product_1 is 

coming from step 4A, GEOV1 corrected climatology and quality flags QFEBF/QFBS come from step 5, 

and the sun zenith angle at 10:00 local solar time was computed in step 3A. 
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2.2.3 Related and previous applications 

It is proposed to adapt the algorithm developed in CGLS for processing Version 2 of 1km LAI, FAPAR 

and FCOVER products from VEGETATION and PROBA-V data (called here GEOV2-CGLS) (Baret  

et al. 2014).  

 

2.2.4 Alternative methodologies currently in use 

A first version of LAI, FAPAR and FCOVER products were estimated using GEOV1-AVHRR 

algorithm from LTDR AVHRR version 3.0 (Baret et al. 2011). 

 

2.2.5 Input data 

In this section, the AVHR instruments and LTDR products used to retrieve the GEOV2-AVHRR 

biophysical products are described. Then all the inputs required for each considered pixel over the 

time series are presented.  

 

2.2.5.1 AVHRR Instrument and LTDR PRODUCTS 

The Advanced Very High Resolution Radiometer (AVHRR) sensor is an optical instrument that 

provides multi-spectral imaging by sensing reflected sunlight and thermal emissions.  

Several AVHRR sensors have been launched since 1981 which allows getting a long time series. 

Table 1 gives the temporal coverage since NOAA-7.  

NOAA Satellite 

Number 

Launch date Ascending 

Node 

Descending 

Node 

Service dates   

7 06/23/1981 1430 0230 08/19/1981-06/07/1986 

8 03/28/1983 1930 0730 05/03/1983-10/31/1985 

9 12/12/1984 1420 0220 02/25/1985-05/11/1994 

10 09/17/1986 1930 0730 11/17/1986-Present 

11 09/24/1988 1340 0140 11/08/1988-09/13/1994 

12 05/13/1991 1930 0730 05/14/1991-12/15/1994 

14 12/30/1994 1340 0140 12/30/1994-Present 

15 05/13/1998 1930 0730 05/13/1998-Failed 

16 09/21/2000 1400 0200 09/21/2000-Present 

17 06/24/2002 2200 1000 06/24/2002-Present 

18 05/20/2005 1400 0200 08/30/2005-Present 

19 06/02/2009 2130 0930 06/02/2009-Present 

Table 1: Historic of the AVHRR temporal coverage. In bold indicates the sensors that have been 

actually used in this study. 
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The AVHRR sensor is nominally a five channel scanning sensor which images in the visible, near 

infrared and thermal infrared wavelength bands. Band 1 is the visible band, Band 2 is the near 

infrared band, and Bands 3, 4 and 5 are the thermal bands. Table 2 and Figure 4 indicate the 

differences of wavelength on each band for each satellite. Note that for 4 of the 7 sensors used (i.e. 

NOAA7, 9, 11, 14) no SWIR band is available, preventing from improved atmospheric correction. 

Band Name NOAA 7,8,9,10,11,12,14 NOAA 15,16,17,18,19 IFOV (mRad) 

1 (Red) 0.58 - 0.68 µm 0.58 - 0.68 µm 1.39 

2 (NIR) 0.725- 1.10 µm 0.725-1.0 µm 1.41 

3A  1.58-1.64 µm 1.30 

Table 2: AVHRR spectral characteristics and instantaneous field of view 

 

Figure 4: NOAA07 – NOAA19 spectral responses in the red and near infrared bands 

 

The sensor has a small field of view, scanning across the Earth by the continuous 360 degree 

rotation of a flat scanning mirror. All the spectral channels are co-registered in order to measure 

energy from the same spot on the earth at the same time. The ground resolution is approximately 

1.1 km at the satellite nadir from the nominal orbit altitude of about 850 km. The width of off-nadir 

pixels increases from 1.1 km to about 5 km at the most extreme viewing angle at the edge of the 

3000 km imaging swath.  

The orientation of the scan lines is perpendicular to the satellite orbit track and the speed of rotation 

of the scan mirror is selected so that adjacent scan lines are contiguous at the sub-satellite (nadir) 

position. The satellite speed and scan mirror rotation rate result in an along track pixel height of 

about 1.1 km. AVHRR data are broadcasted continually as well as tape-recorded onboard the 
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spacecraft for readout at a NOAA receiving centre. The various forms of transmission and area 

coverage (LAC, GAC) are explained below. 

 LAC (Local Area Coverage) is nominally 1 km resolution AVHRR imagery recorded with 

the on board tape recorder for subsequent transmission during the overpass of a station 

controlled by NOAA. Owing to the large number of data bits, only about 11 minutes of 

LAC can be accommodated on a single recorder. LAC imagery can only be obtained from 

NOAA/NESDIS and only in their formats.  

 GAC (Global Area Coverage) data is lower resolution (4 km) AVHRR imagery. It is 

derived on board the NOAA satellite by subsampling and averaging the nominal 1 km 

resolution AVHRR imagery. Out of every 5 normal across track LAC pixels, the 5 bands 

of the first four are individually averaged and all the bands of the fifth pixel are ignored. 

In the along track direction, only every third normal line of LAC/HRPT pixels is considered; 

the two intervening lines are ignored. The GAC spatial resolution is loosely said to be 4 

km resolution. It provides anyway a daily global coverage which is recorded on a satellite 

tape recorder and then transmitted to a ground station controlled by NOAA. 115 minutes 

of this lower resolution imagery can be stored on a recorder, enough to cover an entire 

orbit of data acquisition. GAC imagery can only be obtained from NOAA/NESDIS and 

only in their formats.  

Recently, Vermote and collaborators reanalyzed the GAC data to provide a consistent Long Term 

Data Record (LTDR) (Vermote and Claverie 2013; Vermote et al. 2010). The LTDR 

(http://ltdr.nascom.nasa.gov/ltdr/ltdr.html) provides better performances than the original GAC data 

due to the preprocessing improvements identified in the AVHRR Pathfinder II project and the 

atmospheric corrections used for MODIS.  

Top of atmospheric reflectance were first calibrated using the vicarious calibration algorithm 

(Vermote and Kaufman 1995), cloud screening was applied using the CLAVR-1 algorithm (Stowe et 

al. 1999) using MODIS thresholds. Atmospheric correction was then performed using water vapor 

from NCEP data, ozone from TOMS data, Rayleigh scattering from NCEP atmospheric pressure 

simulations, and aerosols using the red (CH1).  

A BRDF normalization was then achieved by applying correction parameters from POLDER in Ross-

Li-Maignan model (Maignan et al. 2004). Data are provided for nadir viewing and a 45° solar zenith 

angle.  

LTDR data are provided in hdf format at a daily temporal step and at 0.05° (5.6 km at equator) 

sampling interval in a latitude/longitude climate modeling grid (CMG). They are dimensioned [7200, 

3600]. 

They correspond to a reasonable hour of ascending crossing time (close to 14:00, see Table 1). Two 

versions (Version 3 and version 4) for LTDR data are available. LTDR4 geometric performances 

were improved as compared to LTDR3 and the period has been extended to 2019 (instead of 2000 

for LTDR3). Six sensors were used to cover the 1981-2019 period as described in Table 3. In order 

to have the longest archive with the best accuracy, we used the version 4.  However, the LTDR4 

http://ltdr.nascom.nasa.gov/cgi-bin/ltdr/ltdrPage.cgi?fileName=avhrr_calib
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dataset presents a gap lasting around almost a year (from 1st January to 2nd November 2000). On 

the contrary LTDR3 is available for the entire year 2000. For the year 2000, we used all available 

LTDR3 and LTDR4 data.  

 

 Start Date End Date 

NOAA07 1981/06/25 1985/02/02 

NOAA09 1985/01/04 1988/11/07 

NOAA11 1988/11/08 1994/12/31 

NOAA14 1995/01/01 2000/12/31 

NOAA16 2000/11/01 2005/12/31 

NOAA18 2005/07/02 2009/12/31 

NOAA19 2009/06/13 2020/02/28 

Table 3: Historic of the AVHRR NOAA sensors used for GEOV2-AVHRR production. 

 

2.2.5.2 Inputs 

All these inputs are required for each considered pixel over the time series. 

 

2.2.5.2.1 Top of canopy normalized reflectances 

Top of canopy reflectances normalized for a standard observational configuration (zenith view angle 

at nadir, sun at 45° as specified in LTDR) are required as inputs. Reflectances should be expressed 

in terms of reflectance factor, mainly varying between 0 and 0.7 for most land surfaces outside hot-

spot or specular directions and snow or ice cover. The red and near infrared AVHRR bands are 

used. They are provided at 0.05° resolution (≈5.6km² at the equator). 

 

2.2.5.2.2 Sun zenith angle  

Since AVHRR LTDR products are directionally normalized for nadir viewing and sun at 45° zenith 

angle, no information on geometry is required as input to the neural network for LAI and FCOVER. 

Conversely, since FAPAR is defined as the values at 10:00 local solar time, FAPAR needs the sun 

zenith angle (actually the cosine of the sun zenith angle is used) at that time as additional input to 

the neural network. The cosine of the sun zenith angle at 10:00 local solar time needs to be computed 

as a function of pixel latitude and day in the year (the function ‘zenith’ may be used for computing 

the sun zenith angle). On the other hand, the sun zenith angle at 10:00 local solar time will be used 

as an input in step 1B for filtering data at northern high latitudes.  
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2.2.6 Output product 

The outputs are provided by application of the algorithm over each pixel at each dekadal date. They 

include the LAI, FAPAR and FCOVER values as described previously. The range of variation and 

resolution proposed are presented in Table 4. The same conventions as for GEOV2-CGLS are used 

here.  

Variable Physical 
Minimum 

Physical 
Maximum 

Max DN 
value 

Scaling 
factor 

Offset 

LAI 0.0 7.0 210 30 0 

FAPAR 0.0 0.94 235 250 0 
FFC 

FCOVER 

0.0 1.0 250 250 0 

Table 4: Minimum, maximum values and associated resolution for LAI, FAPAR and FCOVER 

products. Note that these values are also valid for the climatological products. 

 

In addition to the product values, other quantitative quality indicators and quality flags are also 
generated (Table 5). 

 

Variable 
Physical 
Minimum 

Physical 
Maximum 

Max DN 
value 

Scaling 
factor 

Offset 

Number of observations in the 
compositing window 

0.0 60 60 1 0 

Left side semi-period of 
compositing  

0 60 60 1 0 

Right side semi-period of 
compositing 

0 60 60 1 0 

RMSE with available daily 
observations (LAI) 

0.0 7.0 210 30 0 

RMSE with available daily 
observations (FAPAR) 

0.0 0.94 235 250 0 

RMSE with available daily 
observations (FCOVER) 

0.0 1.0 250 250 0 

Table 5: Minimum, maximum values and associated resolution for LAI, FAPAR and FCOVER 

quantitative quality indicators. 
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2.2.7 Methodology 

The several steps of the algorithm are here presented. 

2.2.7.1 Data preparation   

2.2.7.1.1 Completing LTDR4 archive with LTDR3 data for year 2000 

As already mentioned there are 10 missing months in 2000 in the LTDR4 archive. We propose to 

replace them by LTDR3. For the year 2000 all the available data from LTDR3 and LTDR4 will be 

used which will result in some overlapping of data from NOAA14 (LTDR3) and NOAA16 (LTDR4) 

over a period of two months. To check the validity of this approach we applied the trained neural 

networks to LTDR3 data over the common period (1981-1999). We compared the corresponding LAI 

products and found a very good relationship well centered around the 1/1 line with no bias. The 

observed noise reflects the different changes performed on the reflectance retrieval. 

 

Figure 5. Scatter plot between LAI retrieved from LTDR3 and LTDR4 using the same neural network. 

2.2.7.1.2 GEOCLIM: climatology of GEOV1/VGT LAI, FAPAR and FCOVER  

GEOCLIM (Verger et al. 2015), a climatology of LAI, FAPAR and FCOVER defined as the average 

inter-annual value from GEOV1/VGT time series, is used as background information for the temporal 

processing in Branch B. Based on the LAI climatology, pixels corresponding to evergreen broadleaf 

forest (EBF) and permanent bare soils (BS) were identified by a particular quality flag (QF). This 

work is described in Annex 1.  

For the pixels identified as EBF, the corresponding flag QC(11) in Table 9 is set to 1. For the pixels 

identified as BS, the flag QC(12) in Table 9 is set to 1. 

2.2.7.1.3 Calibration of neural networks 

A neural network (NNT) for each of the 3 variables considered (LAI, FAPAR, and FCOVER) was 

calibrated as described in Annex 2. 
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2.2.7.2 Retrieval of instantaneous LAI, FAPAR and FCOVER estimates (Branch A) 

2.2.7.2.1 Spectral harmonization (Step 1A) 

We applied a spectral harmonization to correct the slight differences in the spectral responses of 

several AVHRR NOAA sensors in the red and NIR bands (Figure 4). A relative correction with the 

NDVI (Trishchenko et al. 2002) is applied for each band i to estimate NOAA-16 like reflectances, 

 𝜌16
𝑖 , from the reflectance value measured by the other NOAA-xx sensors,  𝜌𝑥𝑥

𝑖 : 

 𝜌16
𝑖 = 𝜌𝑥𝑥

𝑖 + 𝜌𝑥𝑥
𝑖 ∗ (𝑎𝑥𝑥

𝑖 ∗ 𝑁𝐷𝑉𝐼𝑥𝑥
3 + 𝑏𝑥𝑥

𝑖 ∗ 𝑁𝐷𝑉𝐼𝑥𝑥
2 + 𝑐𝑥𝑥

𝑖 ∗ 𝑁𝐷𝑉𝐼𝑥𝑥) 

The correction coefficients (𝑎𝑥𝑥
𝑖 , 𝑏𝑥𝑥

𝑖 , 𝑐𝑥𝑥
𝑖 ; Table 6) were fitted on simulations based on the PROSAIL 

radiative transfer model (Jacquemoud et al. 2009), using the specific spectral response functions of 

the several NOAA-xx sensors (Figure 4). 

 

 RED NIR 

c3 c2 c1 c3 c2 c1 

NOAA7 -0.472356828 0.320957648 -0.083407272 0.061470757 -0.05292409 0.034249109 

NOAA9 -0.415363608 0.183403764 -0.085707595 0.091997568 -0.120327789 0.07633715 

NOAA11 -0.638173822 0.438275038 -0.158994859 0.106433007 -0.143932073 0.088786746 

NOAA14 -0.671403652 0.466115322 -0.194386392 0.05249465 -0.035273029 0.017968874 

NOAA16 0 0 0 0 0 0 

NOAA18 0.252741652 -0.185588803 0.032741312 -0.015916103 0.046098269 -0.03101059 

NOAA19 0.247196889 -0.14302899 0.013464287 0.035956883 -0.08920432 0.060300707 

Table 6: Spectral conversion coefficients between the several AVHRR NOAA sensors. 

 

2.2.7.2.2 First outlier rejection: input out of range (Step 2A) 

Checking the validity of the AVHRR inputs  

The AVHRR data validity must be first checked and all the data having bits 14, 9,8,4,2,1 equals to 1 

must be discarded. 
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Table 7: Quality flags associated to LTDR4 AVHRR data  

Applying the definition domain over the inputs  

The AVHRR data that are outside the definition domain (Annex 2) are first rejected. 

{

𝑖𝑓 𝑁𝐼𝑅 ≥ 𝑅𝐸𝐷

𝑖𝑓 𝑁𝐼𝑅 ≤ −2.41𝑥3 + 4.32𝑥2 − 1.16𝑥 + 0.54 𝑎𝑛𝑑 𝑅𝐸𝐷 < 0.685 
𝑖𝑓 𝑁𝐼𝑅 ≤ 1 𝑎𝑛𝑑  𝑅𝐸𝐷 ≥ 0.685

, 𝑃𝑠𝑡𝑒𝑝1𝐴 = 𝑃𝑠𝑡𝑒𝑝1𝐴,  [1] 

𝑒𝑙𝑠𝑒 𝑃𝑠𝑡𝑒𝑝1𝐴 = 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 

 

2.2.7.2.3 Deriving instantaneous estimates of LAI, FAPAR and FCOVER using neural networks 

(Step 3A) 

A neural network (NNT) was previously calibrated for each of the 3 variables considered (LAI, 

FAPAR, and FCOVER) (see Annex 2). They are then applied to each individual AVHRR observation 

(one pixel at a given date). 

The inputs of the neural networks are:  

 For LAI and FCOVER, LTDRV4 surface reflectance in the red and near infrared bands. No 

sun zenith angle needs to be added since the LTDR are normalized at nadir viewing for 45° 

sun zenith angle. Note that for year 2000 (January to October), LTDRV3 are used. 
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 For FAPAR, LTDRV4 surface reflectance in the red and near infrared bands, as well as the 

cosine of the sun zenith angle at 10:00 solar time to be consistent with GEOV2-CGLS FAPAR 

definition, i.e. black-sky FAPAR at 10:00 solar time. 

The outputs the corresponding instantaneous LAI, FAPAR and FCover values.  

 

2.2.7.2.4 Outlier rejection: output out of range (Step 4A) 

𝑃𝑠𝑡𝑒𝑝3𝐴 values that are outside the physical range of variation of the variables extended by the 

tolerance limits (Table 8) are also rejected. Values that are within the tolerance limits (Table 8) but 

higher (lower) than the physical maximum 𝑃𝑚𝑎𝑥 (minimum, 𝑃𝑚𝑖𝑛) (Table 4) are fixed to the physical 

maximum (minimum). 

{
𝑖𝑓 𝑃𝑠𝑡𝑒𝑝2𝐴 < 𝑃𝑚𝑖𝑛

𝑡𝑜𝑙 , 𝑃𝑠𝑡𝑒𝑝3𝐴 = 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒

𝑖𝑓 𝑃𝑠𝑡𝑒𝑝2𝐴 > 𝑃𝑚𝑎𝑥
𝑡𝑜𝑙 ,  𝑃𝑠𝑡𝑒𝑝3𝐴 = 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒

       [9] 

{
 𝑖𝑓 𝑃𝑚𝑖𝑛

𝑡𝑜𝑙 ≤ 𝑃𝑠𝑡𝑒𝑝2𝐴 < 0,  𝑃𝑠𝑡𝑒𝑝3𝐴 = 0   

𝑖𝑓 𝑃𝑚𝑎𝑥 < 𝑃𝑠𝑡𝑒𝑝2𝐴 ≤ 𝑃𝑚𝑎𝑥
𝑡𝑜𝑙 , 𝑃𝑠𝑡𝑒𝑝3𝐴 = 𝑃𝑚𝑎𝑥

 

𝑒𝑙𝑠𝑒 𝑃𝑠𝑡𝑒𝑝3𝐴 = 𝑃𝑠𝑡𝑒𝑝2𝐴 

 

 LAI FAPAR FCOVER 

Ptol
min -0.20 -0.05 -0.05 

Ptol
max 10.0 0.99 1.05 

Table 8: Tolerance limits (Minimum (Ptol
min) and maximum (Ptol

max)) used for the rejecting output 

outside the expected physical range of variation.  

 

2.2.7.2.5 Preparation of the LAI, FAPAR and FCOVER climatology (Step 5A) 

The GEOCLIM (Verger et al. 2015) product, a global climatology of LAI, FAPAR, and FCOVER from 

GEOV1/VGT products for 1999–2010 and the quality flags identifying EBF and bare soil areas 

(Annex 1: GEOCLIM, a climatology of GEOV1 LAI, FAPAR and FCOVER) are used as an input of 

the GEOV2 algorithm. Some preparatory steps of spatial and temporal resampling are required to 

ingest the GEOCLIM climatology in the GEV2-AVHRR processing chain: 

2.2.7.2.5.1 Resampling the corrected climatology to the AVHRR spatial resolution 

The GEOCLIM climatology at the original 1/112º spatial resolution of VGT was subsequently 

resampled at 0.05º to match AVHRR products. Since both VGT and AVHRR products are on a Plate-

Carrée grid, a simple aggregation of the 5x5 VGT pixels centered around the AVHRR one is 

performed. Similarly, the EBF and BS quality flags (QF) were degraded at 0.05 resolution by 
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assigning the dominant QF in the 5x5 window. The global corrected climatology as well as the 

associated BS and EBF quality flags at 0.05º has been generated by CREAF and provided to CNES 

as an input of the processing chain.  

2.2.7.2.5.2 Interpolation at the daily time step over the entire period 

The 36 dekadal climatology is repeated for all the years of the time series extended by 1 year on 

each side to prevent border effects. This climatology is finally interpolated at the daily time step for 

further use as background information for gap filling in branch B. 

 

2.2.7.3 Processing the time series (Branch B)  

2.2.7.3.1 Computation of P20 and P90 for LAI 

P20 is defined as the 20-percentile of AVHRR LAI estimates (Daily Product_1) computed over the 

whole time series. 

P90 is defined as the 90-percentile of AVHRR LAI estimates (Daily Product_1).  

P20 and P90 are subsequently used in step 1B and 3B. 

2.2.7.3.2 Outlier rejection (Step 1B) 

For this outlier rejection, emphasis was put on LAI products that show the highest sensitivity to 

possible problems in reflectance values. Therefore, when an outlier is detected on LAI data, it is also 

considered as an outlier for FAPAR and FCOVER to keep a high level of consistency between the 

three variables. We filtered the noisy data based on expert knowledge of the expected seasonality:   

 For the high northern latitude (latitude>55º), the LAI (FAPAR, FCOVER) values in winter time 

(SZA>70º where SZA is the sun zenith angle at 10:00 solar time as computed in the step 1B 

for computing the FAPAR) are expected to be relatively stable and low due to the low 

temperatures, short days, and low illumination during winter at these high latitudes. However 

observations are affected by snow cover or very poor illumination conditions that introduce a 

positive bias in the LAI estimates. For the pixels at latitude>55º with P90>0.5, the LAI values 

> P20 and 0.5 in winter time, SZA>70º, were considered as outliers and rejected.  

 For pixels identified as EBF (QF_EBF=1), a minimum seasonality and high values of LAI 

were assumed. The observed artifacts in EBFs are mostly associated to the high cloud cover 

observed in the Equatorial and tropical latitudes which introduce a negative bias in LAI. The 

LAI values < 5.5 and P90, i.e. the 90-percentile of AVHRR LAI estimates (Daily Product_1), 

were rejected. 

 

{
𝑖𝑓 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 > 55º 𝑎𝑛𝑑 𝑃90 > 0.5 𝑎𝑛𝑑 𝑆𝑍𝐴 > 70º 𝑎𝑛𝑑 𝐿𝐴𝐼 > 𝑃20 𝑎𝑛𝑑 𝐿𝐴𝐼 > 0.5, 𝑃𝑠𝑡𝑒𝑝1𝐵 = 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒

𝑖𝑓 𝑄𝐹𝐸𝐵𝐹 = 1 𝑎𝑛𝑑 𝐿𝐴𝐼 < 𝑃90 𝑎𝑛𝑑 𝐿𝐴𝐼 < 5.5,  𝑃𝑠𝑡𝑒𝑝1𝐵 = 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒

        

𝑒𝑙𝑠𝑒 𝑃𝑠𝑡𝑒𝑝1𝐵 = 𝑃𝑠𝑡𝑒𝑝3𝐴                                                                                       [10] 
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2.2.7.3.3 Temporal smoothing and gap filling (TSGF) (Step 2B) 

The daily products after the first outlier rejection were smoothed and gap filled using the same 

techniques (Verger et al. 2011) as the ones considered for processing the climatology (step 5A). 

This is achieved similarly at the dekadal time step with however some particularities that account for 

the important noise associated to the raw data (Figure 6): 

 Adjusting the length of the compositing window to get 6 observations on each side of 

the dekadal date. After evaluating several widely used temporal filters, a simple but robust 

method based on the adaptive Savitzky-Golay (SG) filter (Savitzky and Golay, 1964; Chen 

et al., 2004) was selected to smooth the data. The fixed and symmetric smoothing 

compositing window of the standard SG polynomial fitting method was replaced by an 

adaptive process with variable length and asymmetric (in time) compositing window. The 

number of observations within each side of the dekadal date being smoothed was fixed to 6 

instead of 3 as previously considered for the climatology. This difference is explained by the 

more smooth climatology values as compared to the daily estimates. The length of the 

window is therefore variable, depending on the available observations in the vicinity of the 

dekadal date considered. However, a maximum ±60-days compositing window was used to 

allow adaptation to the local variations in the data. Further, a minimum ±15-days period was 

imposed even if more than 6 observations exist within each semi-period since it increases 

the robustness of the fitting.  

 Use of the climatology to fill missing values. If the number of available observations in 

the maximum 60-days semi-compositing window is lower than 6 observations, available 

observations are systematically completed with 6 climatology values located every 10 days 

evenly distributed over the 60 days period. If there are no climatology values, this will result 

in a missing value at the considered dekadal date. The considered climatology for filling gaps 

is a daily climatology that results from the linear interpolation of the original dekadal 

climatology as described in step 5A. 

 Fit polynomial model. A weighted polynomial fitting is applied with weighting factors, W, 

computed according to the distance of the daily estimates to the TSGF outputs derived from 

the previous iteration. A sigmoidal function was considered for computing the weights 𝑊 with 

less weight associated to the values smaller than the previous TSGF estimates since the low 

values have more chances to be contaminated by residual clouds or snow.  

                                               𝑊 = 2/(1 + exp(−2 ∗ 𝛿))     [11] 

Where 𝛿 is the difference between the daily estimates and the TSGF outputs. To put less 

emphasis on the climatology values used to fill gaps, weights of the climatology fill values 

were multiplied by a factor of 0.5. For the first iteration of TSGF, weights of actual data were 

fixed to 1 and to 0.5 for the climatology. 

 Use interpolation to fill values. Finally, to fill the residual gaps, a linear interpolation within 

a ±60-days window is applied. A simple linear interpolation based on a local moving window 

of ±60-days length was applied to fill gaps in the time series. To improve the efficiency of gap 
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filling, an iterative process (niter=2 iterations) was considered: the gain of available data 

achieved with the first iteration allows improving robustness and continuity in the gap-filled 

data through a second iteration. Gaps longer than 120 days are not filled and will result in 

missing data.  

 Finally to avoid possible artifacts introduced by divergences of the temporal filters being 

applied, the TSGF values were forced to the physical range of variation of the LAI, FAPAR 

and FCOVER (Table 4). 

  

Figure 6: Flow chart showing how the temporal smoothing gap filling (TSGF) algorithm works. 

2.2.7.3.4 Outlier rejection (Step 3B) 

Similarly to the previous outlier rejection (step 1B), emphasis was put on LAI product for identifying 

outliers. The original data were filtered by comparison between LAI values and the temporal 

smoothed and gap filled (TSGF) LAI series. A point under (respectively over) the TSGF estimates 

(interpolated at daily step from the dekadal values) was considered as an outlier if its absolute 

distance to all the TSGF LAI values within a ±5-day window is either: 

 greater than 0.10 and the 15% of the TSGF value.  

 lower than 0.10 and the 15% of the TSGF value.  

Considering a ±5-day window prevents from eliminating too many observations during periods of 

high rate of variation of LAI. 

The process is repeated niter times, niter being the number of iterations used for TSGF (niter was 

fixed to 3). To avoid rejecting false outliers the upper values were only filtered in the last iteration. 

The more restrictive criteria imposed here to the values under TSGF upper envolope accounts for 

the effect of residual clouds that are systematically lower than the actual value of the LAI estimates 

(Figure 7). Similarly to prevent rejecting too many low values in the base level due to a possible 

No 

Yes 

Number of  
available  
observations  
within 60 - day  
period >=6? 

Complete  raw data  with 
climatology values 

Temporal smoothing method 

Gap filling method 

Temporal  smoothed 
gap  filled data 

(1  day ) 

Filtered daily data 
( after first outlier rejection ) 
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limitation of TSGF to fit the data in these regions, a higher negative distance of 0.5 to TSGF is 

considered for the values within ±0.5 of the base level. The base level is defined as the maximum of 

percentile 20 of the data (P20) and a threshold fixed to 0.5 LAI. This last condition to avoid removing 

valid data in the base level is only applied when the percentile 90 of the data is higher than 0.5. The 

performance of this automatic method is illustrated in Figure 7. 

For the LAI values lower than the TSGF upper envelope, the following conditions are applied to filter 

outliers in the niter iterations: 

 

If {
 𝐿𝐴𝐼𝑡 < 𝑇𝑆𝐺𝐹𝑡   

min(|𝐿𝐴𝐼𝑡 − (𝑇𝑆𝐺𝐹𝑡−5,𝑡−4…𝑡+5⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)|) > max(0.1, 0.15 ∗ 𝑇𝑆𝐺𝐹𝑡)
}, 𝑃𝑠𝑡𝑒𝑝3𝐵 = 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 

𝑒𝑙𝑠𝑒𝑖𝑓 

{
  
 

  
  𝐿𝐴𝐼𝑡 < 𝑇𝑆𝐺𝐹𝑡   

min(|𝐿𝐴𝐼𝑡 − (𝑇𝑆𝐺𝐹𝑡−5,𝑡−4…𝑡+5⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)|) > max(0.1, 0.15 ∗ 𝑇𝑆𝐺𝐹𝑡)

𝑃90 > 0.5
|𝐿𝐴𝐼𝑡 −max(𝑃20,0.5)| < 0.5

|𝐿𝐴𝐼𝑡 − 𝑇𝑆𝐺𝐹𝑡| < 0.5 }
  
 

  
 

, 𝑃𝑠𝑡𝑒𝑝3𝐵 = 𝑃𝑠𝑡𝑒𝑝2𝐵  [12] 

 

𝑒𝑙𝑠𝑒,                                                                                                                              𝑃𝑠𝑡𝑒𝑝3𝐵 = 𝑃𝑠𝑡𝑒𝑝2𝐵 

 

For the LAI values higher than TSGF, the following conditions are applied to filter outliers in the last 
iteration:  

 

If {
 𝐿𝐴𝐼𝑡 > 𝑇𝑆𝐺𝐹𝑡   

min(|𝐿𝐴𝐼𝑡 − (𝑇𝑆𝐺𝐹𝑡−5,𝑡−4…𝑡+5⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)|) > max(0.1, 0.15 ∗ 𝑇𝑆𝐺𝐹𝑡)
}, 𝑃𝑠𝑡𝑒𝑝3𝐵 = 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑣𝑎𝑙𝑢𝑒      [13] 

𝑒𝑙𝑠𝑒,                                                                                                            𝑃𝑠𝑡𝑒𝑝3𝐵 = 𝑃𝑠𝑡𝑒𝑝2𝐵 

 

For FAPAR and FCOVER variables and pixels identified as EBF, the step 3B is not applied. 
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Figure 7: Illustration of the 3-iterations of TSGF filtering (continuous line) to eliminate contaminated 

data (filled circles). Empty circles correspond to valid data.  

 

2.2.7.3.5 Subsequent iterations of the steps 2B and 3B 

Because the TSGF should rely mostly on valid observations, the step 2B was repeated after the 

outlier rejection performed in step 3B which requires itself a first application of TSGF. To deal with 

the significant noise in the data this process is conducted iteratively. A total number of niter=3 

iterations is proposed for LAI. Figure 7 illustrates improvements in TSGF outputs through the 

proposed iterative process. For FAPAR and FCOVER variables the iterative application of steps 2B 

and 3B is not required since outliers were previously filtered focusing on LAI as described previously. 

Similarly, for pixels identified as EBF these iterations are not necessary. For FAPAR, FCOVER step 

2B are only applied once and step 3B is not applied. For EBFs steps 2B and 3B are not applied. 

 

2.2.7.3.6 Consistent Adjustment of the climatology to actual observations (CACAO, Step 4B) 

Adjusting climatological patterns to actual observations was shown to efficiently capture the product 

dynamics and the inter-annual anomalies while filling gaps and smoothing biophysical products in a 

robust way (Baret et al. 2011; Verger et al. 2013). CACAO consists in fitting the climatology to the 

actual daily products by shifting and scaling the climatology values over portions of the seasonal 

cycle (sub-seasons) (Figure 8). The CACAO process is applied to each sub-season and will result 

in estimates at the daily time step. A sub-season is defined by the period between two consecutive 

extrema in the climatology. The following steps were thus followed: 

 Decompositing the climatology into sub-seasons. The global extrema (minima and 

maxima) points from the climatology time series should be identified first. However, to exclude 

possible false extrema in the time series due to the effect of residual noise in the signal, 

extrema values that differ by less than 0.10 LAI (0.025 for FAPAR and FCOVER) or the 15% 

of the median value of the climatology were excluded. The sub-seasons were slightly extended 

by considering the minimum extra time window before and after the period containing either 

30% of the signal dynamics or 30% of the period length (in days) of the adjacency sub-
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seasons. This allowed more robust fit by providing clearer temporal features on which the 

adjustment could grasp. 

 Shifting and scaling the climatology for each sub-season. The climatology was fitted to 

the actual daily observations for each year and each sub-season. The daily climatology  𝑃𝑐𝑙𝑖𝑚 

was fitted to the daily 𝑃  data by considering a scale factor, scale, and a temporal shift, 𝑠ℎ𝑖𝑓𝑡: 

        �̂�(𝑡) = 𝑠𝑐𝑎𝑙𝑒 ∙ 𝑃𝑐𝑙𝑖𝑚(𝑡 + 𝑠ℎ𝑖𝑓𝑡)                          [14] 

If P̂ follows the usual climatological pattern, 𝑃𝑐𝑙𝑖𝑚 , 𝑠𝑐𝑎𝑙𝑒 = 1 and 𝑠ℎ𝑖𝑓𝑡 = 0. The two 

parameters (𝑠𝑐𝑎𝑙𝑒, 𝑠ℎ𝑖𝑓𝑡)  are found by minimizing the cost function defined by the RMSE 

between daily observations and the estimated product values after fitting the climatology.  

The shift parameter was allowed to vary between −60 < 𝑠ℎ𝑖𝑓𝑡 < 60 by steps of 5 days which 

resulted in 25 adjustments between the shifted climatology and the 𝑃  data. A minimum of 

10% of the potential observations representing 30% of the signal in the sub-season are 

required for fitting the climatology. Otherwise, the original climatology is considered as a 

backup solution. For pixels identified as bare soil or EBF with almost no seasonality, the 

climatology is adjusted over the whole time series if a minimum of 𝑛 = 10 observations exist. 

In the transition between sub-seasons, a weighted average between �̂�  estimates from the 

two sub-seasons was considered as the final solution. A linear weight contribution varying 

between 1 and 0 (between 0 and 1) was assigned to the first (second) sub-season estimates 

in the overlapping period. 

 Finally to avoid possible artifacts introduced by divergences of the temporal filters being 

applied, the CACAO values were forced to the physical range of variation of LAI, FAPAR and 

FCOVER (Table 4). 
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Figure 8: Illustration of CACAO method. Top: the dotted green line corresponds to the original 

climatology, the green circles indicate the position of the extrema in the climatology, the green 

segments indicate the duration of the sub-seasons, the continuous line corresponds to the fitted 

climatology: CACAO, red circles correspond to the data and black squares are outliers. Middle: shift 

factor (day units) representing the temporal anomalies of LAI data as compared to the climatological 

pattern. Bottom: Scale factor (LAI units) representing the magnitude anomalies of LAI. 

 

2.2.7.3.7 Computation of the dekadal GEOV2 product (Step 5B) 

TSGF was finally applied over the filtered daily observations at each dekadal step for generating the 

final GEOV2 product. Six observations within a maximum period of 60 days on each side of the 

dekadal dates are necessary. However, the minimum period considered is 30 days instead of 15 

days as in step 2B. The minimum period was extended in step 5B to improve the smoothness of the 

resulting temporal profile. Further, the CACAO product was used to fill gaps in the time series in 

place of the standard climatology as it was used previously in the step 2B. Since CACAO is expected 

to be closer to the data as compared to the original climatology, the use of CACAO helps in the 

estimation of the final product over period with missing observations. 
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2.3 QUALITY INDICATORS 

2.3.1 Quality flags 

The quality flag associated to the GEOV2-AVHRR products is coded in 16bit as described in Table 

9. It is consistent with the one used for GEOV2-CGLS products.  

 Bit = 0 Bit = 1 

0 Unused 

1 : Processing 
The pixel is processed 

(land) 
The pixel is unprocessed (water) 

2 : Climatology 

status 
OK Missing climatology 

3 : Filling No filling procedure 

The number of valid observations at least on 

one side of the ±60-day period is lower than 

6 and a gap filling procedure (Bit 13-14) is 

applied 

4 Reserved 

5 Reserved 

6 : Input status 
At least one valid data 

within ±60 days 
No valid data within ±60 days 

7 : LAI status OK Out of range or invalid 

8 : FAPAR status OK Out of range or invalid 

9 : FCOVER status OK Out of range or invalid 

10 : SZA status 
SZA <= 70º or latitude <= 

55º 
SZA > 70º and latitude > 55º 

11 : EBF status 

Pixel is not recognized as 

Evergreen Broadleaf 

Forest 

Pixel is recognized as Evergreen Broadleaf 

Forest 

12 : BS status 
Pixel is not recognized as 

Bare Soil 
Pixel is recognized as Bare Soil 

13 : Climatology 

filled 
Not filled Filled with climatology 

14 : Gap filled Not filled Filled with interpolation 

15 Unused 

Table 9: Description of the quality flag provided for the LAI, FAPAR, FCOVER. 

 

2.3.2 Computation of the associated quality assessment 

The following quality indicators associated to the GEOV2-AVHRR products are proposed:  
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 The number of valid AVHRR observations, NOBS, in the composition period that are used to 

compute the product value (Step 5B). The more observations, the more reliable are the 

products.  

 The length in days of each semi-period (before and after the dekadal date) of composition. 

The shorter the semi-periods, the more reliable are the products. 

 The RMSE of the final decadal product, 𝑃𝐺𝐸𝑂𝑉2/𝐴𝑉𝐻𝑅𝑅(𝑑), as compared to the instantaneous 

estimates, 𝑃(𝑖), in the compositing period.  

    𝑅𝑀𝑆𝐸(𝑑) = √
∑ (𝑃𝐺𝐸𝑂𝑉2/𝐴𝑉𝐻𝑅𝑅(𝑑)− 𝑃 (𝑖))²𝑁𝑂𝐵𝑆
𝑖

𝑁𝑂𝐵𝑆
                                 [15] 

The RMSE is computed only if 𝑁𝑂𝐵𝑆 ≥ 2, otherwise it is set as a missing value. 
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3 LIMITATIONS 

GEOV2-AVHRR capitalizes on the development and validation of already existing products: 

CYCLOPES version 3.1 and MODIS collection 5 and the use of neural networks. The CYCLOPES 

and MODIS products used in the training dataset, the efficacy of the training process and the criteria 

used to define the input outliers will determine, respectively, the magnitude and range of variation of 

the final products, their reliability and the definition domain used to remove contaminated values.  

The final product is also dependent on the criteria used to filter the output outliers, particularly for the 

tropical forests and high latitudes. Outlier rejection constitutes a critical step in the algorithm. The 

efficiency of the temporal methods used in the composition of products from daily estimates depends 

on the level of noise and gaps in the time series and on the reliability of the auxiliary data 

(climatology) used as a background information to fill gaps.  

The main identified limitations are associated to the input data: 

- The temporal consistency of long time series of GEOV2-AVHRR products depends mainly 

on the temporal consistency of input TOC reflectances between the different AVHRR NOAA 

sensors used for the generation of 1981-2019 LTDR dataset. A spectral harmonization was 

here applied to correct the differences in the spectral response function of the sensors. 

- Significant efforts were performed in LTDR to reprocessed AVHRR NOAA reflectances and 

V4 (used as input in GEOV2-AVHRR) appears to constitute an improvement as compared to 

V3 (used in GEOV1/AVHRR) in terms of the number of data being delivered. The period was 

extended from the year 2000 to 2019. Nevertheless, residual problems persist in LTDRV4 

mainly at very high latitudes and near the Equator mainly due to atmospheric effects and 

cloud contamination. The relatively broad red (0.58 - 0.68 μm) and near infrared (0.725 - 1.10 

μm) bands on the AVHRR increase the sensitive to atmospheric conditions (Vermote et al. 

2009). An important limitation of LTDRV4 dataset in terms of continuity is that the data is 

missing for the most part of the year 2000. This is not the case for the previous version 

LTDRv3 data. For this reason we used LTDRv3 to complete LTDRv4 data for the year 2000. 

A new version, Version 5 of LDTR is now available but not at the moment of the generation 

of GEOV2-AVHRR. 

- The climatology plays an important role for gap filling and temporal smoothing of the data. 

Possible artifacts in the climatology are translated to the final products. When the climatology 

is missing no auxiliary information is available to fill gaps in GEOV2 time series. The 

GEOCLIM climatology (Verger et al. 2015) based on GEOV1-VGT time series, corrected 

from artifacts and resample to AVHRR spatial resolution was used since no GEOV2 

climatology was available at the time the study was conducted.  

- Similarly, the quality flags used for the identification of bare soil (BS) and evergreen broadleaf 

forests (EBF) were generated based on GEOCLIM climatology (Verger et al. 2015). The 

same quality flags were used in GEOV2-AVHRR and GEOV2-CGLS processing in order to 

achieve consistency in the time series. 
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- The approach used to process pixels flagged as evergreen broadleaf forest (EBF, QC(11)=1 

in Table 9) constitutes an oversimplification of the reality because of the possible seasonality 

of EBFs. The high uncertainty associated with the data due to poor atmospheric correction 

and very high cloud occurrence in equatorial and tropical latitudes prevented the extraction 

of meaningful phenology at the resolution of the individual pixels of 1 km. The high spatial 

and temporal resolution of Sentinel2 sensors should improve the monitoring of vegetation in 

these problematic areas. 

- In cases of a wrong identification of a pixel as an EBF, GEOV2 only reproduces the high 

values but not the actual seasonality of the pixel. 

- The algorithm uses a static mask for EBF based on the climatology for the period 1999-2010. 

Consequently, for pixels flagged as EBF, the GEOV2 product may not capture deforestation 

processes. This mask may require to be updated in the future. 

- The values of LAI, FAPAR and FCover over pixels identified as BS (QC(12)=1 in Table 9) 

are close to zero but not strictly zero. Some users may prefer forcing the values of biophysical 

variables to zero for pixels flagged as BS. 

- GEOV2-AVHRR LAI, FAPAR and FCover variables are retrieved over inland waters not 

discriminated as water in the land/sea mask (QC(1)=0 in Table 9). Inland water pixels are 

mostly identified as Bare Soil (BS, QC(12)=1 in Table 9) based on GEOCLIM climatology. 

Although it would bring an improvement to mask the inland waters, it does not exist inland 

water mask reliable enough to be used without taking the risk to create side effects in the 

products. 

The user should use the product with due attention to the quality flags values as well as the 

associated uncertainties, in particular for areas with long periods of cloudiness. 
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4 CONCLUSION 

The GEOV2-AVHRR, LAI, FAPAR and FCOVER products capitalize on the efforts undertaken to pre-

process the AVHRR temporal series, resulting in the LTDR data, and the recent development of 

improved processing of products resulting in the GEOV2-CGLS dataset. The GEOV2-AVHRR time 

series were designed to provide smooth and continuous time series. Emphasis was therefore put on 

the outlier rejection, smoothing and gap filling of the daily products. In order to achieve consistency 

with GEOV2-CGLS products we used the same algorithm with some adaptations to the 

characteristics of LTDR data.  

A dedicated validation exercise is achieved in [THEIA-RP-44-0281-CREAF] following the guidelines 

proposed by the CEOS/LPV. The performances of GEOV2-AVHRR were quantified with regards of 

GEOV2-CGLS and other existing products as well as compared to ground data. Validation results 

showed very good agreement with the GEOV2-CGLS products.  

The user should use the product with due attention to the QF values as well as proxy of uncertainties 

coming mainly from the RMSE values and the number of actual observations used. 

The combination of the GEOV2-AVHRR time series (1981-2019) with GEOV2-CGLS time series 

(1999 - present) results in the longest consistent time series of LAI, FAPAR and FCOVER. Because 

AVHRR sensors are still in orbit, the coming years will be processed as soon as the corresponding 

LTDR data will be available. This will ensure the expansion of the GEOV2-AVHRR time series after 

2019. The CGLS Sentinel-3 products based on the same principles also ensures continuity of the 

time series. 
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ANNEX 1: GEOCLIM, A CLIMATOLOGY OF GEOV1 LAI, FAPAR AND FCOVER 

The principles of the generation of the GEOCLIM dataset are here described (Figure 9). Further 

information is provided in Verger et al. (2015).  

Inter-annual average values from the GEOV1 Copernicus Global Land time series of biophysical 

LAI, FAPAR and FCOVER at 1-km resolution and 10-day frequency were first computed for 1999 to 

2010 (Baret  et al. 2010). Since the climatology plays an important role for gap filling and temporal 

smoothing of the data, possible artifacts in the climatology were corrected through a two-step 

process: 

 Correction of specific artifacts 

 Gap filling and temporal smoothing 

 
Correction of specific artifacts 

The climatology was first corrected over specific problematic conditions (Figure 9) based on the prior 

knowledge: 

o Some artifacts are observed at northern high latitudes during the winter time when the 

sun zenith angle, SZA>70º: Anomalous seasonality and unexpected increases in LAI 

(FAPAR, FCOVER) with an artificial maximum peak in winter and high inter-annual 

variability. These artefacts mainly due to snow cover or very poor illumination conditions 

that limited the number of valid observations and the reliability of the bidirectional 

reflectance model applied for the correction of VEGETATION data (Roujean et al. 1992). 

The LAI (FAPAR, FCOVER) values are expected to be relatively stable and low due to the 

low temperatures, short days, and low illumination during winter at these high latitudes. To 

correct these artefacts at northern high latitudes (latitude>40º) for winter (defined here as 

the period for which the sun zenith angle, SZA>70º), the climatology values higher than the 

20-percentile (P20clim) were fixed at minima by preferentially selecting the values computed 

from at least three valid observations. If none of the dekads meets this condition, the 

minimum value computed over all the dekads was used.  

o Significant artifacts were also detected in Equatorial and tropical latitudes due to the 

permanent presence of clouds which results in high instabilities in the temporal profiles of 

GEOV1/VGT climatology. Since most of these cases correspond to evergreen broadleaf 

forests (EBF), a minimum seasonality and high values were assumed. A pixel was identified 

as being an EBF if the 90-percentile (P90clim) of LAI climatology is > 4.5 and the 20-

percentile P20clim is >P90clim -1.5. This method for the detection of EBF is based only on 

GEOV1 products (Figure 10a): it agrees well with the GLOBCOVER land-cover map 

(Defourny et al. 2009) (Figure 10b). For EBFs, the climatology values were fixed to the 90-

percentile. A quality flag indicating that the pixel was identified as EBF is activated 

(QFEBF=1). It is subsequently used in Steps 1-4 of Branch B.  

o Some artifacts were also detected in GEOV1/VGT climatology for bare soil (BS) areas. A 

pixel was identified as being a BS if the 90-percentile of LAI climatology P90clim is <0.05. 

For those cases the climatology values were fixed to the median value (50-percentile) 
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computed over the entire period. In addition, a quality flag indicating that the pixel was 

identified as BS is activated (QFBS=1). It is subsequently used in Step 4 of Branch B. 

 

 

 

Figure 9: Flow chart showing how the GEOV1/VGT climatology is corrected from residual artifacts. 
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Figure 10: (a) Map of bare soil and evergreen broadleaf forest areas identified based on GEOV1/VGT 

climatology. (b) Simplified GLOBCOVER land-cover map after aggregating the 22 original classes 

into six main land-cover classes. 

 

Gap filling and smoothing 

The climatology was then gap filled and smoothed to eliminate possible high temporal frequency 

residual artifacts. The gap filling (GF) and temporal smoothing (TS) techniques proposed by (Verger 

et al. 2011) were applied here.  

 Gap filling. A simple linear interpolation was applied if two valid dekads are available along the 

36 potential dekads of the climatology 

 Temporal smoothing. A second order polynomial order was fit to the data within a ±30-day 

compositing period centered on the date being smoothed. This polynomial fitting applied at a 

dekadal time step. 

 Figure 11 shows the original and corrected climatology at four problematic sites.  
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Figure 11: Correction of GEOV1/VGT climatology. The blue line corresponds to the original 

GEOV1/VGT climatology LAI product. The red line corresponds to the corrected climatology based 

on prior knowledge. Green line is the final GEOCLIM climatology resulting from applying gap filling 

and temporal smoothing techniques to the first corrected climatology.  
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ANNEX 2: NEURAL NETWORKS CALIBRATION 

 

BUILDING THE LEARNING DATA SET 

The neural networks were calibrated using the LTDR4 BELMANIP2 sites extracts over the 2003-

2007 period, that includes acquisitions from both NOAA16 and NOAA18. The BELMANIP2 set of 

sites is an update of the original BELMANIP sites (Baret et al., 2006).  The 445 BELMANIP2 sites 

present the same distribution of vegetation types and conditions as the Earth’s surface while showing 

little topography and good level of homogeneity. The land cover homogeneity of each site was 

double checked using the GLOBCOVER map, and the Google Earth engine (Weiss et al., 2014). 

Figure 12 shows that at 3km resolution almost 90% of the sites are homogeneous in terms of land 

cover. 

 

 

Figure 12. Homogeneity of the BELMANIP2 sites (as compared to BELMANIP1 and DIRECT validation 

site) at different spatial resolution (from 3 to 49km²). 
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The inputs of the neural networks are LTDRV4 surface reflectance in the red and near infrared bands 

as well as the cosine of the sun zenith angle at 10:00 solar time for FAPAR. 

To keep the consistency with the GEOV2-CGLS product, the neural networks were calibrated with 

the same output, i.e. a product resulting from the fusion of MODIS and CYCLOPES. To generate 

the training data base, all the inputs (reflectance) and outputs (products) should share the same 

spatial and temporal support. For this purpose, MODIS products were re-projected into the 

CYCLOPES system (latitude/longitude on WGS-84, E.G plate carrée projection at 1/112°). We used 

3x3 pixels extracts. As LTDR data are generated daily while MODIS and CYCLOPES correspond to 

a synthesis of 8 and 10 days products, the training dataset is generated with a dedicated processing: 

1. Selection of the MODIS products: all the MODIS products available within ±10 days around 

the LTDR-AVHRR date are gathered. Then, only the main and main + saturation LAI and 

FAPAR products are considered. This will result in nMOD available products (0<nMOD<18)  

2. Selection of CYCLOPES products: products available within ±10 days around the LTDR-

AVHRR date are gathered. Only the valid LAI, FAPAR and FCOVER products are 

considered. This results in nCYC products (0<nCYC<9) . 

3. If there are at least 5 valid products for MODIS and CYCLOPES (nMOD>4 and nCYC>4):  

a. If the majority of BELMANIP2 site pixels is not classified as an EBF (GLOBCOVER 

Classification), we compute the median of the CYLOPES and the median of the 

MODIS product. 

b. If the majority of BELMANIP2 site pixels is classified as an EBF (GLOBCOVER 

Classification), this potentially indicates a high level of noise in the data since these 

biomes are located in very cloudy areas. We compute the difference MOD between 

the 70% and 90% percentiles within the nMOD MODIS product value. If MOD <0.2 

then the following three values are computed: 

i. The 70% percentile value of LAI and FAPAR products is computed over the 

nCYC products available. 

ii. The 70% percentile value of LAI and FAPAR products is computed over the 

nMOD products available. The several threshold values were defined after 

trial and error tests to reduce the large variability observed over the individual 

MODIS LAI and FAPAR values and get more consistency between MODIS 

and CYCLOPES products. The first condition on MOD  over LAI MODIS 

products prevents from using too variable values, while the lower values may 

show higher variability because of possible cloud contamination or 

atmospheric residual effects. Similarly, the 70% percentile value selected for 

LAI and FAPAR reduces the occurrence of cloud and atmosphere artifacts. 

4. As already proposed for the GEOV2 products, we used a fused product between the resulting 

daily CYCLOPES and MODIS values to benefit from the better performances observed for 

CYCLOPES FAPAR products for the lower FAPAR values (no offset for the low values), and 

for MODIS LAI products for the larger LAI values. We thus averaged MODIS and CYCLOPES 

products using a weighing factor (Figure 13): 
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𝑤 =
1

0.982
(1 −

1

(1 + exp(−2. 𝐿𝐴𝐼𝐶𝑌𝐶𝑉31 + 4))
) 

              {
    𝐿𝐴𝐼𝑓𝑢𝑠𝑒𝑑     =         𝐿𝐴𝐼𝑀𝑂𝐷𝐶5. (1 − 𝑤) +  𝐿𝐴𝐼𝐶𝑌𝐶𝑉31 ∙ 𝑤

  𝑓𝐴𝑃𝐴𝑅𝑓𝑢𝑠𝑒𝑑     = 𝑓𝐴𝑃𝐴𝑅𝑀𝑂𝐷𝐶5 ∙ (1 − 𝑤) + 𝑓𝐴𝑃𝐴𝑅𝐶𝑌𝐶𝑉31  ∙ 𝑤
             [2] 

 

 

Figure 13. The weighing function used in GEOV2 AVHRR_LTDR4 for the fusion between CYCLOPES 

and MODIS LAI and FAPAR products. The dashed line corresponds to the weight used for generating 

GEOV1 products. The dotted line corresponds to w=0.5. 

For FCOVER, we used the CYCLOPES product which is the only one available for the considered 

period. In a similar way as was done for the GEOV1 product (Baret et al, 2013), we rescaled the 

CYCLOPES product as: 

 𝐹𝐶𝑂𝑉𝐸𝑅 =
𝐹𝐶𝑂𝑉𝐸𝑅

0.69
   [3] 

 

FILTERING OUT THE NNT LEARNING DATABASE 

We selected solely the data of best quality for AVHRR based on their associated flags (e.g. data for 

which the cloud, cloud shadow, sunglint and invalid red or NIR reflectances are not activated). As 

they are still contaminated with noise, mainly due to cloud mis-detection or atmospheric residual 

effects, we have first applied different filters on the learning database to improve the estimation 

accuracy of the neural network.   

 

Manual and visual filtering  

We first filtered the AVHRR LTDR input reflectances. As red and NIR reflectances must be consistent 

to get a realistic product, we decided to train a first version of the neural networks with the AVHRR 

reflectances as inputs. We used a typical 2 layers architecture as used to generate GEOV2-CGLS 
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products: one hidden layer composed of 5 neurons characterized by a tangent sigmoid function and 

one output layer composed of one linear neuron. Inputs and output were normalized. The output 

(Product_0 at a daily time step) of the first neural net is computed in a similar way as for the final 

neural network by fusing CYCLOPES version 3.1 and MODIS collection 5 LAI. 

The NNT was applied over the 2003-2007 period. The outliers in the daily Product_0 (first neural 

net) estimates were manually filtered out considering the GEOV1/VGT climatology as background 

information. The manual filtering was achieved using a graphical user interface specifically 

developed for that purpose. Considering that manual filtering is a tedious and time consuming task, 

we decided to perform the filtering only using the LAI product considering that the input bands are 

the same for the 3 variables and that the LAI/FAPAR/FCOVER time cycle are consistent between 

MODIS and CYCLOPES products. MODIS and CYCLOPES products were also manually filtered in 

the same manner and for the same period. We filtered only the temporal profile of the central pixel 

of the site, assuming that the surrounding pixels have the same behavior. 

The temporal consistency was used here as the main criterion: the temporal profile should be more 

or less the same as the climatology (considering that the season can be shifted between years and 

the LAI level can be different) and the temporal profile should be smooth. Despite the inherent 

subjectivity associated to manual filtering, at this algorithm level, a manual method was preferred to 

automatic methods to avoid possible systematic biases which would affect neural networks 

estimates. Note however that manual filtering was only applied to the training database while 

completely automatic methods of outlier detection were applied in subsequent steps (step 2A, 4A, 

1B and 3B) of the algorithm. The performance of this manual method is illustrated in Figure 14. 

 

Figure 14: Manual filtering of the outliers. The green line corresponds to the GEOV1 climatology 

product, red circles to AVHRR-V0 (first neural net) valid data, black squares are outliers. 
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Filtering residual artefacts 

As manual filtering might be not enough when a high level of noise and shaky temporal profiles are 

obtained for some of the BELMANIP2 sites, residual outliers were filtered. 

We looked at the relationship between AVHRR LAI product V0 and AVHRR-NDVI (Figure 15). As 

expected, we observed an exponential relationship. The remaining outliers in the LAI-NDVI plane 

were finally removed by considering that all the values above and below two exponential curves 

between LAI and NDVI defined by equation 3 are outliers (Figure 15). The data that are selected for 

the learning data base follow: 

   {
𝑳𝑨𝑰𝑭𝑼𝑺𝑬 ≤ 𝒆

𝑵𝑫𝑽𝑰𝑨𝑽𝑯𝑹𝑹
𝟎.𝟑 − 𝟎. 𝟖𝟓

𝑳𝑨𝑰𝑭𝑼𝑺𝑬 ≥ 𝒆
𝑵𝑫𝑽𝑰𝑨𝑽𝑯𝑹𝑹

𝟎.𝟔 − 𝟏. 𝟕

                                [4]  

      

 

Figure 15: Filtering of outliers in the training dataset based on the LAI-NDVI relationship is displayed 

as a density plot: the redder, the denser the points are. The green and the red lines define the upper 

and lower limits  

 

DETERMINATION OF THE DEFINITION DOMAIN 

The performances of the neural network technique are closely linked to the way the learning 

database is generated. When applying them on a given pixel, it is necessary to check whether this 
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pixel is represented or not in the learning database. This will avoid applying the neural networks on 

residual clouds for example. 

The RED/NIR relationship of the filtered learning database is presented in Figure 16 and shows that 

it is possible to define two curves between each we can ensure that the performances of the neural 

networks will not be degraded. The two curves are defined by: 

                     

𝑁𝐼𝑅 ≥ 𝑅𝐸𝐷
𝑁𝐼𝑅 ≤ −2.41 𝑅𝐸𝐷3 + 4.32 𝑅𝐸𝐷2 − 1.16 𝑅𝐸𝐷 + 0.54  if 𝑅𝐸𝐷 < 0.685
𝑁𝐼𝑅 ≤ 1 𝑖𝑓 𝑅𝐸𝐷 ≥ 0.685

   [5] 

 

Figure 16: The two curves corresponding to the limits of the definition domain of the filtered learning 
database. Pixels are declared valid if they are between the green and red curve limits. 

 

CALIBRATING THE NEURAL NETWORKS  

Once the learning dataset is properly set up and filtered, we trained the neural networks to relate the 

AVHRR LTDRV4 reflectance to the fused CYCLOPES and MODIS products. 

The training dataset was finally composed of 250 000 paired values of AVHRR reflectances and the 

corresponding FUSED variables. The whole dataset was randomly split into a learning dataset made 

of 70% of the data available, a validation dataset of 15% of samples to evaluate the theoretical 

performances and the remaining 15% are used to prevent possible overfitting during the training 

process. 

Ten neural networks were trained in parallel for each variable. The ones achieving the best 

performances over the validation dataset were selected. The theoretical performances evaluated 

over the test dataset show a good predictive capacity of the neural networks for the three biophysical 

variables (Figure 17). Moreover, no obvious bias in the estimates is observed. 
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Figure 17: Theoretical performances of the neural network used to estimate LAI, FAPAR and FCOVER 

products over the validation data set (37500 samples) made of the fused CYCLOPES and MODIS 

products. The color indicates the density of points from red (highest) to blue (lowest density). RMSE 

is the root mean square error, R is the Pearson correlation coefficient, and slope and offset are the 

parameters of the least squares regression. The blue line is the 1:1 line.  

 

PRACTICAL IMPLEMENTATION OF THE NNTS 

All the parameters (normalization, synaptic coefficients and biases, polynomial rescaling) that define 

the neural network are provided in an Excel file associated to this ATBD.   

To apply the neural network, the following steps must be followed: 

 Normalization of the inputs: for all the inputs X (Red, Near infrared bands, and cosine of 

the solar zenith angle at 10:00 for FAPAR), the following normalization equation must be 

applied: 

                                      𝑋𝑛𝑜𝑟𝑚 = 2 ∙ (𝑋 − 𝑋𝑚𝑖𝑛)/(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) –  1                           [6] 

where 𝑋𝑛𝑜𝑟𝑚 is the normalized input value, and 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are computed over the 

neural network training data set. Values of 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 will be provided in the excel sheet 

‘Normalization’.  

 Run the neural network. The neural network is described by its architecture, i.e, the number 

of hidden layers (1) and the output layer (1). Each layer is described by its number of neurons, 

associated weight and biases and transfer function. For the neurons of the hidden layer (5 

neurons), the transfer function is a tangent sigmoid function given by: 

                                            𝑦 = 𝑇𝑎𝑛𝑠𝑖𝑔(𝑥)  =  2/(1 + 𝑒𝑥𝑝(−2𝑥)) − 1       [7] 

For the output layer (one neuron), the transfer function is linear (𝑦 = 𝑥)  

For each neural network (one per product), tables are provided given the weight and biases 

for each neuron in an excel file under sheet ‘Weights’. 

 Denormalisation of the output product P. It simply consists in applying the inverse function 

used for input normalization: 

(a) (b) (c) 
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     𝑃𝑆𝑡𝑒𝑝2𝐴 = 0.5 ∙ (𝑃𝑛𝑜𝑟𝑚
𝑁𝑁𝑇 + 1) ∙ (𝑃𝑚𝑎𝑥

𝑁𝑁𝑇 − 𝑃𝑚𝑖𝑛
𝑁𝑁𝑇)  + 𝑃𝑚𝑖𝑛

𝑁𝑁𝑇
      [8] 

where 𝑃𝑛𝑜𝑟𝑚 is the normalized output value issued from the NNT, and 𝑃𝑚𝑖𝑛
𝑁𝑁𝑇and 𝑃𝑚𝑎𝑥

𝑁𝑁𝑇are 

the minimum and maximum value of the product computed over the neural network training 

data set. These values are described under excel sheet ‘Normalization’.  

 


