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> Soil parameters mapping in agricultural areas and especially soil
moisture and surface roughness is very usefull for many applications in
m hydrology, agriculture and risk.

> The free availability of quality remote sensing data encourages the
development of operational algorithm for soil parameters mapping at
high spatial and temporal resolutions

f“éf 3 : J
7Y
@éﬁ v Copernicus sensors: Sentinel-1 radar and Sentinel-2 optical satellites provide data
N at high spatial resolution (10 m for S1 and 10 to 60 m for S2) and high revisit time
8- (6 days for S1 and 5 days for S2)

v Landsat ...
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» Radar sensors = Active systems = allow mapping whatever the
Yol meteorological conditions (clouds, etc.), both day and night. This is not
5 T the case with optical sensors (no data if clouds)
%
» Radar sensors are sensitive to soil moisture and surface roughness
oV whereas optical sensors are sensitive to vegetation development
. (chlorophyll, hydric stress, biomass ...)
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MODELLING RADAR BACKSCATTERING

= e e e e e e D

e =Radar observation parameters: Radar
A (frequency , incidence angle,...) Electromagnetic backscattering 0
E »Soil surface parameters: Models Backscatter ¢ .
(soil moisture, roughness..) (Kirchoff, Dubois, Oh, :
1 Integral Equation Model ...) |
I-_-----------------—----——-------II
RADAR SIGNAL INVERSION
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> Smooth soil has a poor infiltration capacity compared to rough soils

— Initial fragmentary Fragmentary state Continuous state
structure with structural crusts : with depositional crusts

60

Infiltration capacity (mm/h)

Smooth soll

Cumulative rainfall (mm)

Rough saoill
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» Radar signal backscattered by a bare soil increases with the surface

roughness (Hrms) according to a logarithmic or exponential law to
o then become constant after a certain roughness threshold (depends
R on the wavelength and the radar’s incidence angle).

» This threshold corresponds to Hrms values of 4 cm in L-band, 1 cm in
C-band, and around 0.5 cm in X-band.

;@ > Only large wavelengths (e.g. L-band) and strong incidence angles
(e.g. 459) allow to map three roughness classes (smooth “sowing,”
rough “great plowed soil,” moderately rough “small plowed soil”).

Low incidence ~ 20° High incidence ~50°
Oi[ @® ERs23° oi[ @  RADARSAT 47° J
| 6

sigma_0 [dB] = -5.06 - 3.65 exp (-k rms) ; R2=0.29

sigma_0 [dB] =-9.81 - 9.46 exp (-k rms) ; Rz=0.7
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Use of SAR data for monitoring surfaces potentially o °
contributing to runoff in an agricultural context G RADARSAT 50
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d b sigma_0 [dB] =-9.81-9.46 exp (-k rms) ; R2=0.76
» 5 7
c N
- % g ]
i = ‘E -8 —
: e\, T g By P
Bare SOII runoff : bare soils B E ; i
g |
q §§ g 2
e
3 ) |
‘ IS
3% m 4
| ! i 1
Vegetated soil ——— B #ross contibuing to - ‘ | | ‘ ‘
runoff in winter (47%) 0 1 2 3 4 5

rms mean [cm]

rms

Other

Assess to areas contributing to runoff

&
4 —;E‘ ¥
si' P E AN
Scale EN-HELIE T A
———— Meters 4 R
2000 0 R
T

Moderate runoff potential (25%)

[ Low runoff potential (4%)
Other

’I: I High runoff potential (18%)



3. Sensitiv

F e R LY
' ¥ b < » LLs
Y 4 % ;
& e . ;

.

ty g

(4 ~ 3 20
R e SR
A ,ir R SR

—

e e\

M= e

» Radar signal increases with the soil moisture (SSM) according to a
logarithmic law. After a soil moisture of around 35 vol.%, the radar
signal starts to decrease with the increase of SSM =» Estimation of
SSM cannot be done after this threshold of around 35 vol.%.

» Optimal configuration for obtaining the best sensitivity of the radar
signal to soil moisture (weak influence of the roughness): weak radar
incidence angle (152-352) and low radar wavelength (X-band).
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An operational high resolution Soil
moisture retrieval algorithm using
Sentinel Images



» Currently, several satellite missions provide surface soil moisture estimations at
different spatial resolutions (low to medium spatial resolutions):

b g v SMAP: 36 km x 36 km, 9 km x 9 km, 1 km x 1 km
v ASCAT: 25 km x 25 km, 12.5 km x 12.5 km, 1 km x 1 km
v SMOS: 25 km x 25 km

v New: Copernicus Land distributes the first soil moisture estimations over
the European continent at 1-km using S1 data

» An operational approach for mapping soil moisture at high spatial resolution (plot
scale) in agricultural areas was developed by coupling S1 and S2 images:

v based on the inversion of the Water Cloud Model (WCM) combined with
the modified IEM, and using the neural networks technique

v S2MP: Sentinel-1/Sentinel-2 derived soil Moisture at Plot scale
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» > Vegetated cover soil: (Attema and Ulaby 1978)
P n : backscattered radar signal (linear unit)

d _ tOt

§id Ootot =0° veg T T2 0° soil

Tl = g veg - Vegetation contribution (linear unit)

_ = T2: Attenuation

¢ 8 0%, =AV.CosB (1-T?)
= g% : Soil contribution (linear unit)

ey T _ ) : .

e Y T2 = Exp (-2.B.V,.sec 6) = V,=V,:vegetation descriptors (BIO (kg/m2), VWC
QL (kg/m2), HVE (m), LAI (m2/m2), FAPAR, FCOVER, and
A NDVI

. 0%, = computed using the IEM )

| calibrated by Baghdadi et al.

e (corre.IaTC|0n length is replaced A et B: fitting parameters depend on vegetation
‘S by a fitting parameter)

3 descriptors and radar configuration

0 : Incidence angle

» Estimation of SSM only for crops and grassland

»Main limitation: NDVI > 0,7 (low penetration of
the radar signal in C-band)




¥

Bl
N 2 3
\ AL * ',&

Calibrated WCM + IEM
Baghdadi et al. (2006,2011,2017)

SSM= 2:2:40
Hrms = 0.5:0.1:3.8 cm
NDVI= 0:0.1:0.7
0 = 20°:1:45°

Synthetic database
SSM: soil moisture of o°

Hrms: root mean surface height
0: SAR incidence angle

0% SAR backscattering coefficient

Add noise = close to real SAR data:
Relative error on NDVI :15%
Absolute error on o° ; £0.7dB

Noisy Synthetic
database of o°

o\o Ky
S 0 NNs training:

Inputs - outputs:
noisy (VV, NDVI) + 8> SSM
noisy (VV, HV, NDVI) + 8> SSM

K-fold cross validation

NN validation NN training

Mapping soil moisture using
Real S1 and S2 data

Validation (Bias, RMSE)
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o | Results (1/2)¥Synthetic database

“

NN: VV + NDVI+ 6= mv

AP Bias= 0.00vol.%
‘ 45 RMSE= 6.09vol.%

0 i L A % HHHH » For SSM < 25 vol.% : bias = 2.7 vol.% & RMSE = 5.5 vol.%

Estimated mv(vol.%)
(=)

2 _ & il » For SSM > 25 vol.% : bias = -4.1 vol.% & RMSE = 6.9 vol.%

‘ % 5 10 15 20 25 30 35 40 45 50 : : High RMSE for
1 ’ ] Reference mv(vol.%) Over-estimation of SSM high roughness

for high roughness

R 15;
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4 # —4#— A priori dry to slightly wet —4— A priori dry to slightly wet
% 4, =¥ A priori very wet 1 s+ A priori very wet
3 3 =3+ No a priori 02<mv({vol.%)<25 =¥¢- Noa pr!or! 02<mv{vol.%)<25
4 . 10 —— No a priori 25<mv(vol.%)<40 10/ —— No a priori 25<mv(vol.%)<40
. : .
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4
3
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1
3 Under-estimation of SSM 80 05 10 45 20 25 30 35 40 S0 05 10 15 20 25 30 35 40
Reference Hrms (cm) Reference Hrms (cm)

for low roughness
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% Results (2/2)
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NN: VV + NDVI+ 6=» SSM
’:f ‘ L4
A AT Over-estimation of SSM
TN for high roughness
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10 ‘: S . Under-estimation of SSM
s L ele ' S for low roughness
o® /® Bias= 261 Vol.%
i . 0 ‘ ‘ - RMSE 721 VOI%
B, 0 5 10 15 20 25 30 35 40
t 2 : In situ mv (Vol.%)

» Inversion was performed using real S1 data and NDVI derived from optical images
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and the precipitation records derived from the GPM data (Global Precipitation

% Measurement)
b 4':," Precipitation (mm) -+-SSM (vol.%) L=t
2.5 0 High SSM-Rainfall correlation $§ 33 ° 100
: | & High SSM estimations following rainfall events ; N
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%
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January 02,2017
Soil Moisture (Vol.%) [l <15 |15-20 | 20-25 [ > 25
£ Precipitation (mm) |:| 0-5 \:| 5-10 - 10-40 - > 40
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® French Land Data Center Theia : https://www.theia-land.fr/en/product/soil-
# .  moisture-with-very-high-spatial-resolution/

\
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SOIL MOISTURE AT VERY HIGH SPATIAL RESOLUTION
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TABLE OF CONTENT =
Data access

Data access —

o it Download Download

o VHSR Soil Moisture Data VHSR Soil Moisture Data
Patadescription on catalogue.theia-land.fr on Thisme
The VHSR Soil Moisture product
Contact Read-Me Soil Moisture (Dec. 19)
i




L

Mapping irrigated areas using radar and optical
remote sensing data
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»> The radar signal averaged over large grids (10 km x 10 km) helps to
discriminate between rain and irrigation

With rainfall events: Coherence
between Plot S1 and grid S1 signals
Without rainfall events: Frequent
change of Plot S1 signal with
stability of grid S1 signal

/

Precipitation (mm!
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- Detectlng Irrlgatlon Events We develop a decision tree algonthm
(IEDM: Irrigation event detection model) to detect irrigation events

using S1 and S2 time series data

v" S1 and S2 satellites provides images with a revisit time better than one week, which

could be adequate for irrigation detection at plot scale.

Main Assumptions for detecting Irrigation Events:
¢ Increase in "TgLﬂT is mainly related to increase in SSM

& With rainfall both ﬁgLGT and “?I}Iﬂﬁ increase

¢ With Irrigation UgLﬂT increases with stability or decrease of “?I}Iﬂﬁ

No detected Irrigation

No detected Irrigation Possible Irrigation

High possibility
Aed o = 1dB

Medium possibility
0.5 < Aop or < 1dB

Low possibility
—0.5 < A6 o7 < 0.5dB
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Irrigation | Detected False
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@ > Supervised classifiers
£ - Use terrain data
e =  With supervised classifiers, it is difficult to generalize the same classifier on

other years and other regions
» Noin situ data = No Irrigation map

=>» We propose an operational mapping of irrigated plots using S1 and S2

v 4 time series: without depending on in situ data

83 » Generate a reference dataset (irrigated / no-irrigated plots) before using
supervised classification models
, v' Irrigated plots must have several irrigation events
‘ v' Irrigated plots must have high maximum NDVI value during the crop growth cycle

= Use this reference dataset in the construction of the supervised classification
model



Q'fperatlonal mag

‘\_ \ﬁ} f'r‘ﬂ

“@ﬁ AN

irtigated plots -

PR ﬂﬁo:';;*"’;

4 time series (TS)
for 4 S1 orbits

Irrigation
—+ |EDM vy =pess
| RPG possibilities
i Data ; 0 i
i \ | OPLOT |
| Combine
| "“"-‘;‘-"“ﬂ R i possibilities l
i plot an || -
: 10kmx 10 _F 1ol : A A L T T
km scales i Map
| . NDVI ——  maxypy cumul;,,, l
| | i L . ; Validation
i I """""""""""""""""" 5 against
| Cumumf. 25 Qumulh,>250 =
. maxypy < 0.7 |
Non Irrigated
: Reference —
plots
Accuracy metrics for the proposed S?IM vs RF built using in situ data
Year Method Overall Accuracy F_score F_score irrigated | F_score non-irrigated
RF S2IM
2020
RF in situ
RF S’ IM
2019
RF in situ
RF S’IM
2018

RF in situ

S0
RF S2IM -
. ]

RF in situ
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& Climatic conditions of the studied region

= Over humid areas, mapping irrigated areas faces more
challenges and can have lower accuracies than that obtained
over arid and semi-arid areas
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Irrigated
= If the studied area is humid:

v Frequent rainfall events =» lesser difference in the vegetation
index between the irrigated and rain-fed plots.

v Less chance to detect irrigation using radar data because the
soil is humid for irrigated and no-irrigated plots,
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