Characterization of soil surface properties using radar remote sensing

Nicolas Baghdadi¹, Hassan Bazzi¹, Mehrez Zribi²

¹INRAE, French National Research Institute for Agriculture, Food and Environment, TETIS, Montpellier, France

²Cesbio - CNRS, Toulouse, France

Soil parameters and Remote Sensing

- Soil parameters mapping in agricultural areas and especially soil moisture and surface roughness is very usefull for many applications in hydrology, agriculture and risk.
- The free availability of quality remote sensing data encourages the development of operational algorithm for soil parameters mapping at high spatial and temporal resolutions
 - Copernicus sensors: Sentinel-1 radar and Sentinel-2 optical satellites provide data at high spatial resolution (10 m for S1 and 10 to 60 m for S2) and high revisit time (6 days for S1 and 5 days for S2)

✓ Landsat ...

Soil parameters and Remote Sensing

- Radar sensors = Active systems = allow mapping whatever the meteorological conditions (clouds, etc.), both day and night. This is not the case with optical sensors (no data if clouds)
- Radar sensors are sensitive to soil moisture and surface roughness whereas optical sensors are sensitive to vegetation development (chlorophyll, hydric stress, biomass ...)

Approach to study soil parameters

Relationship between surface roughness and runoff

> Smooth soil has a poor infiltration capacity compared to rough soils

Sensitivity of radar signal to soil roughness

- Radar signal backscattered by a bare soil increases with the surface roughness (*Hrms*) according to a logarithmic or exponential law to then become constant after a certain roughness threshold (depends on the wavelength and the radar's incidence angle).
- This threshold corresponds to *Hrms* values of 4 cm in L-band, 1 cm in C-band, and around 0.5 cm in X-band.
- > Only large wavelengths (e.g. L-band) and strong incidence angles (e.g. 45^o) allow to map three roughness classes (smooth "sowing," rough "great plowed soil," moderately rough "small plowed soil").

Mapping of areas contributing to runoff

Sensitivity of radar signal to soil moisture

- ➤ Radar signal increases with the soil moisture (SSM) according to a logarithmic law. After a soil moisture of around 35 vol.%, the radar signal starts to decrease with the increase of SSM → Estimation of SSM cannot be done after this threshold of around 35 vol.%.
- Optimal configuration for obtaining the best sensitivity of the radar signal to soil moisture (weak influence of the roughness): weak radar incidence angle (15^o-35^o) and low radar wavelength (X-band).

An operational high resolution Soil moisture retrieval algorithm using Sentinel images

Currently, several satellite missions provide surface soil moisture estimations at different spatial resolutions (low to medium spatial resolutions):

Introduction

- ✓ SMAP: 36 km x 36 km, 9 km x 9 km, 1 km x 1 km
- ✓ ASCAT: 25 km x 25 km, 12.5 km x 12.5 km, 1 km x 1 km
- ✓ SMOS: 25 km x 25 km
- New: Copernicus Land distributes the first soil moisture estimations over the European continent at 1-km using S1 data

An operational approach for mapping soil moisture at high spatial resolution (plot scale) in agricultural areas was developed by coupling S1 and S2 images:

- ✓ based on the inversion of the Water Cloud Model (WCM) combined with the modified IEM, and using the neural networks technique
- ✓ S²MP: Sentinel-1/Sentinel-2 derived soil Moisture at Plot scale

Water Cloud Model (WCM)

> Vegetated cover soil:

(Attema and Ulaby 1978)

- $\sigma^{0}_{tot} = \sigma^{0}_{veg} + T^{2} \sigma^{0}_{soil}$
- $\sigma^{0}_{veg} = A.V_{1}.Cos \theta$ (1- T²)
- $T^2 = Exp(-2.B.V_2.sec \theta)$

 σ^0_{soil} = computed using the IEM calibrated by Baghdadi et al. (correlation length is replaced by a fitting parameter)

- σ⁰_{tot} : backscattered radar signal (linear unit)
- σ⁰ veg: Vegetation contribution (linear unit)
- T²: Attenuation
- σ⁰ soil : Soil contribution (linear unit)
- V₁ = V₂: vegetation descriptors (BIO (kg/m2), VWC (kg/m2), HVE (m), LAI (m2/m2), FAPAR, FCOVER, and NDVI)
- θ : Incidence angle
- A et B: fitting parameters depend on vegetation descriptors and radar configuration

Estimation of SSM only for crops and grassland

Main limitation: NDVI > 0,7 (low penetration of the radar signal in C-band)

Methodology

Results (1/2) : synthetic database

NN: VV + NDVI+ $\theta \rightarrow mv$

Results (2/2) : Real database

NN: VV + NDVI+ $\theta \rightarrow$ SSM

Inversion was performed using real S1 data and NDVI derived from optical images

Soil moisture maps

- A good coherence was observed between the temporal evolution of the soil moisture and the precipitation records derived from the GPM data (Global Precipitation Measurement)
- High SSM-Rainfall correlation
- High SSM estimations following rainfall events

-

Decreases in estimated SSM due to absence of rainfall

Soil moisture maps on the Theia website

French Land Data Center Theia : https://www.theia-land.fr/en/product/soil-moisture-with-very-high-spatial-resolution/

theia-land.fr/en/product/soil-moisture-with-very-high-spatial-resolution/

SOIL MOISTURE AT VERY HIGH SPATIAL RESOLUTION

Mapping irrigated areas using radar and optical remote sensing data

Irrigation mapping at plot scale

The radar signal averaged over large grids (10 km x 10 km) helps to discriminate between rain and irrigation

With rainfall events: Coherence between Plot S1 and grid S1 signals

Without rainfall events: Frequent change of Plot S1 signal with stability of grid S1 signal

Detection of irrigation events

- Detecting Irrigation Events: We develop a decision tree algorithm (IEDM: Irrigation event detection model) to detect irrigation events using S1 and S2 time series data
 - ✓ S1 and S2 satellites provides images with a revisit time better than one week, which could be adequate for irrigation detection at plot scale.

Detection of irrigation events

Plot	Irrigation Events	Detected Irrigations	False Detections	Sensitivity	Precision	F-score
P1	15	12	2	80.0%	85.7%	82.4%
P2	13	11	1	84.6%	91.6%	87.3%
P3	5	5	2	100%	71.4%	83.3%
Total	33	28	5	84.4%	87.5 %	85.9 %

Operational mapping of irrigated plots

Supervised classifiers

- Use terrain data
- With supervised classifiers, it is difficult to generalize the same classifier on other years and other regions
- No in situ data → No Irrigation map

→ We propose an operational mapping of irrigated plots using S1 and S2 time series: without depending on in situ data

- Generate a reference dataset (irrigated / no-irrigated plots) before using supervised classification models
 - ✓ Irrigated plots must have several irrigation events
 - ✓ Irrigated plots must have high maximum NDVI value during the crop growth cycle
- Use this reference dataset in the construction of the supervised classification model

Operational mapping of irrigated plots

Accuracy metrics for the proposed S²IM vs RF built using in situ data

Year	Method	Overall Accuracy	F score	F score irrigated	F score non-irrigated
2020	RF S ² IM	84.3%	84.1%	86.4%	81.3%
	RF in situ	89.0%	87.5%	90.2%	88.1%
2019	RF S ² IM	93.0%	92.8%	93.0%	92.5%
	RF in situ	91.3%	91.3%	91.2%	91.3%
2018	RF S ² IM	81.8%	82.2%	86.8%	70.0%
	RF in situ	88.0%	86.9%	92.0%	73.6%
2017	RF S ² IM	72.8%	74.0%	78.1%	62.0%
	RF in situ	78.3%	76.5%	85.7%	53.7%

Operational mapping of irrigated plots

Climatic conditions of the studied region

- Over humid areas, mapping irrigated areas faces more challenges and can have lower accuracies than that obtained over arid and semi-arid areas
- If the studied area is humid:
- ✓ Frequent rainfall events → lesser difference in the vegetation index between the irrigated and rain-fed plots.
- Less chance to detect irrigation using radar data because the soil is humid for irrigated and no-irrigated plots,

2019

2017

Mar Mar Apr Jun Vov Oct

> lay Ten

Irrigated

Aug ept

0.8 0.7 0.6 IACI 0.5 0.4

0.2

0.1

0.8 0.7

0.6 17 0.5 0.4