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 Soil parameters mapping in agricultural areas and especially soil
moisture and surface roughness is very usefull for many applications in
hydrology, agriculture and risk.

 The free availability of quality remote sensing data encourages the
development of operational algorithm for soil parameters mapping at
high spatial and temporal resolutions

 Copernicus sensors: Sentinel-1 radar and Sentinel-2 optical satellites provide data
at high spatial resolution (10 m for S1 and 10 to 60 m for S2) and high revisit time
(6 days for S1 and 5 days for S2)

 Landsat …

Soil parameters and Remote Sensing



 Radar sensors = Active systems = allow mapping whatever the
meteorological conditions (clouds, etc.), both day and night. This is not
the case with optical sensors (no data if clouds)

 Radar sensors are sensitive to soil moisture and surface roughness
whereas optical sensors are sensitive to vegetation development
(chlorophyll, hydric stress, biomass …)

Soil parameters and Remote Sensing



Approach to study soil parameters

Radar observation parameters:
(frequency , incidence angle,…)

Soil surface parameters:
(soil moisture, roughness..)

MODELLING RADAR BACKSCATTERING

Radar 
Backscatter σ0

Electromagnetic backscattering
Models

(Kirchoff, Dubois, Oh,
Integral Equation Model …)

RADAR SIGNAL INVERSION

 Remote Sensing

« Radar » 
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 Smooth soil has a poor infiltration capacity compared to rough soils

Relationship between surface roughness and runoff



 Radar signal backscattered by a bare soil increases with the surface
roughness (Hrms) according to a logarithmic or exponential law to
then become constant after a certain roughness threshold (depends
on the wavelength and the radar’s incidence angle).

 This threshold corresponds to Hrms values of 4 cm in L-band, 1 cm in
C-band, and around 0.5 cm in X-band.

 Only large wavelengths (e.g. L-band) and strong incidence angles
(e.g. 45º) allow to map three roughness classes (smooth “sowing,”
rough “great plowed soil,” moderately rough “small plowed soil”).

Sensitivity of radar signal to soil roughness
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Mapping of areas contributing to runoff

rms
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 Radar signal increases with the soil moisture (SSM) according to a
logarithmic law. After a soil moisture of around 35 vol.%, the radar
signal starts to decrease with the increase of SSM  Estimation of
SSM cannot be done after this threshold of around 35 vol.%.

 Optimal configuration for obtaining the best sensitivity of the radar
signal to soil moisture (weak influence of the roughness): weak radar
incidence angle (15º-35º) and low radar wavelength (X-band).

Sensitivity of radar signal to soil moisture
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An operational high resolution Soil 

moisture retrieval algorithm using 

Sentinel images



Currently, several satellite missions provide surface soil moisture estimations at
different spatial resolutions (low to medium spatial resolutions):

 SMAP: 36 km x 36 km, 9 km x 9 km, 1 km x 1 km

 ASCAT: 25 km x 25 km, 12.5 km x 12.5 km, 1 km x 1 km

 SMOS: 25 km x 25 km

 New: Copernicus Land distributes the first soil moisture estimations over
the European continent at 1-km using S1 data

An operational approach for mapping soil moisture at high spatial resolution (plot
scale) in agricultural areas was developed by coupling S1 and S2 images:

 based on the inversion of the Water Cloud Model (WCM) combined with
the modified IEM, and using the neural networks technique

 S²MP: Sentinel-1/Sentinel-2 derived soil Moisture at Plot scale

Introduction



 σ0
tot  : backscattered radar signal (linear unit) 

 σ0
veg : Vegetation contribution (linear unit)

 T2 : Attenuation

 σ0
soil : Soil contribution (linear unit)

 V1 = V2 : vegetation descriptors  (BIO (kg/m2), VWC 

(kg/m2), HVE (m), LAI (m2/m2), FAPAR, FCOVER, and 
NDVI)

 θ : Incidence angle

 A et B: fitting parameters depend on vegetation 
descriptors and radar configuration

σ0
tot = σ0

veg + T2 σ0
soil

σ0
veg = A.V1.Cos θ  (1- T2) 

T2 = Exp (-2.B.V2.sec θ) 

σ0
soil = computed using the IEM

calibrated by Baghdadi et al.
(correlation length is replaced
by a fitting parameter)

(Attema and Ulaby 1978) Vegetated cover soil: 

Water Cloud Model (WCM)

Estimation of SSM only for crops and grassland

Main limitation: NDVI > 0,7 (low penetration of 
the radar signal in C-band)



Methodology

NNs training:

Inputs  outputs:

noisy (VV, NDVI) + θ SSM

noisy (VV, HV, NDVI) + θ SSM
NN training

Validation (Bias, RMSE)

Calibrated WCM + IEM
Baghdadi et al. (2006,2011,2017)

Synthetic database 

of σ0

SSM= 2:2:40

Hrms = 0.5:0.1:3.8 cm

NDVI= 0:0.1:0.7

θ = 20°:1:45°

Add noise  close to real SAR data: 

Relative error on NDVI :15%

Absolute error on σ0 : ±0.7dB

Noisy Synthetic

database of σ0

NN validation

Mapping soil moisture using

Real S1 and S2 data

SSM: soil moisture

Hrms: root mean surface height

θ: SAR incidence angle

σ0: SAR backscattering coefficient

K-fold cross validation



Results (1/2) : synthetic database

NN: VV + NDVI+ θmv

 For SSM < 25 vol.% : bias = 2.7 vol.% & RMSE = 5.5 vol.% 

 For SSM > 25 vol.% :  bias = −4.1 vol.% & RMSE = 6.9 vol.% 

Under-estimation of SSM

for low roughness

Over-estimation of SSM

for high roughness

High RMSE for

high roughness



Results (2/2) : Real database

NN: VV + NDVI+ θ SSM

 Inversion was performed using real S1 data and NDVI derived from optical images

Under-estimation of SSM

for low roughness

Over-estimation of SSM

for high roughness



Soil moisture maps

Precipitation (mm) 0 - 5 10 - 40 > 40 5 - 10

Soil Moisture (Vol.%) < 15 15 - 20 20 - 25 > 25

(a) (b)

 A good coherence was observed between the temporal evolution of the soil moisture
and the precipitation records derived from the GPM data (Global Precipitation
Measurement)

High SSM-Rainfall correlation

High SSM estimations following rainfall events

Decreases in estimated SSM due to absence of rainfall



French Land Data Center Theia : https://www.theia-land.fr/en/product/soil-
moisture-with-very-high-spatial-resolution/

Soil moisture maps on the Theia website



Mapping irrigated areas using radar and optical 

remote sensing data



 The radar signal averaged over large grids (10 km x 10 km) helps to
discriminate between rain and irrigation

Irrigation mapping at plot scale

Irrigated Plot

Grid
Plot

Grassland

Without rainfall events: Frequent 

change of Plot S1 signal with 

stability of grid S1 signal

With rainfall events: Coherence 

between Plot S1 and grid S1 signals



 Detecting Irrigation Events: We develop a decision tree algorithm
(IEDM: Irrigation event detection model) to detect irrigation events
using S1 and S2 time series data

 S1 and S2 satellites provides images with a revisit time better than one week, which

could be adequate for irrigation detection at plot scale.

Detection of irrigation events



Detection of irrigation events

Plot
Irrigation 

Events

Detected 

Irrigations

False 

Detections
Sensitivity Precision F-score

P1 15 12 2 80.0% 85.7% 82.4%

P2 13 11 1 84.6% 91.6% 87.3%

P3 5 5 2 100% 71.4% 83.3%

Total 33 28 5 84.4% 87.5% 85.9%



 Supervised classifiers

 Use terrain data

 With supervised classifiers, it is difficult to generalize the same classifier on
other years and other regions

 No in situ data No Irrigation map

 We propose an operational mapping of irrigated plots using S1 and S2
time series: without depending on in situ data

 Generate a reference dataset (irrigated / no-irrigated plots) before using
supervised classification models

 Irrigated plots must have several irrigation events

 Irrigated plots must have high maximum NDVI value during the crop growth cycle

 Use this reference dataset in the construction of the supervised classification
model

Operational mapping of irrigated plots



Operational mapping of irrigated plots



Operational mapping of irrigated plots

Non irrigated

Irrigated

 Over humid areas, mapping irrigated areas faces more
challenges and can have lower accuracies than that obtained
over arid and semi-arid areas

 If the studied area is humid:

 Frequent rainfall events  lesser difference in the vegetation
index between the irrigated and rain-fed plots.

 Less chance to detect irrigation using radar data because the
soil is humid for irrigated and no-irrigated plots,

Climatic conditions of the studied region


