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content, soil roughness, canopy height, forest biomass …).

 Main research topics:

 Soil parameters estimation from SAR data over bare agricultural fields

 Forest height and aboveground biomass estimation from ICESat/GLAS

lidar data

 SAR data and wetlands mapping

 Potentiel of SAR for monitoring sugarcane crops

 Potential of SAR data for mudbank monitoring

 Surface and subsurface structural mapping using low frequency radar

 Potential of radar images for wet snow mapping

 …
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 The objective of this course is to present:

(1) the behavior of the C-band radar signal as a function of soil parameters

of agricultural plots (mainly moisture and roughness)

(2) approaches to mapping moisture and roughness by coupling radar et

optical images

Objective
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1. Describe the instrumental parameters of radar sensors that influence the
backscattered signal

2. Describe the soil parameters, in particular roughness and moisture

2.1 Roughness

2.2 Soil moisture

3. Behavior of the radar signal

3.1 Penetration depth of the radar wave

3.2 Sensitivity of the radar signal to ground parameters
3.2.1 Sensitivity of the radar signal to roughness

3.2.2 Sensitivity of the radar signal to moisture

3.2.3 Sensitivity of the radar signal to salinity

3.2.4 Sensitivity of the radar signal to soil freezing

4. Modeling the radar signal

4.1 Case of bare soil

4.2 Case of soils with vegetation

5. Estimation of soil moisture

Plan
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1. Instrumental parameters of radar sensors
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 SAR stands for Synthetic Aperture Radar (SAR)

 Active system: provides its own source of electromagnetic energy 
Images day and night, with or without clouds

 ERS-1/2 (EU): first global and regular coverage SAR sensors, early 90s: 35-
day repeatability, formerly paid data

 Since 2016, Sentinel-1A/1B provides an image every 6 days, open and free
data  Data adapted to agronomic and hydrological applications at local
or regional scales (10 m pixel)

 A response to local and global issues:

 Territorial development

 Manage the environment

 Understand the effects of climate change / anthropogenic pressure

SAR systems



A: Illumination, Sun for optical sensors, Antenna for radar sensors
B: Interaction between the radiation and the atmosphere
C: Interaction with the target
D: Recording of backscatterd energy by the sensor
E: Transmission
F: Interpretation and analysis
G: Applications

 Spatial remote sensing is of vital importance for the mapping and monitoring
of environmental problems: global and permanent information

© CCRS/CCT

Remote sensing process

A

B

C

D
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 Three major instrumental parameters: wavelength, polarization and
incidence angle.

 SAR sensors currently operational: TerraSAR-X, Cosmo-SkyMed,
Sentinel-1, RADARSAT-2, ALOS/PALSAR-2 …

 SAR Archive: ERS, ASAR/Envisat, RADARSAT-1, PALSAR/ALOS …

 The radar signal depends on:

 characteristics of the wave emitted (wavelength, incidence and
polarization)

 characteristics of the environment. In the case of soil without
vegetation roughness, soil moisture, soil composition…

Instrumental parameters
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 Radar wavelength () = length of a cycle of a 
wave

 Incidence angle (): the angle measured between 
the radar beam and the normal

L



 Polarization: Orientation of the electric field of the electromagnetic wave. 
Linear polarizations  HH, VV, HV and VH

Sentinel-1: ~5.6 cm

Instrumental parameters



 There are currently many radar sensors in operation: RADARSAT-2, TerraSAR,
CosmoSkyMed, PALSAR-2/ALOS and Sentinel-1

 The only one that provides free and open access data is Sentinel-1

 Sentinel-1 (S1): European sensor, C band (~6 cm), spatial resolution = 10 m,
two satellites 1A and 1B

 A temporal resolution better than the week

 Image download:

1- Sentinel-1 hub : https://scihub.copernicus.eu/dhus/#/home

2- Peps: https://peps.cnes.fr/rocket/#/home

…

 Processing of S1 images: https://sentinel.esa.int/web/sentinel/toolboxes

Current SAR sensors

https://scihub.copernicus.eu/dhus/#/home
https://peps.cnes.fr/rocket/#/home
https://sentinel.esa.int/web/sentinel/toolboxes


Sentinel-1
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 Soil moisture and surface roughness play an important role in many
applications

 Surface runoff occurs when rainfall intensity exceeds the soil
infiltration capacity. In addition to vegetation, soil roughness also
plays a role of trapping water in agricultural areas, which increases
infiltration and in turn reduces downstream runoff.

 Bare soils are most implicated in the considerable risk of runoff and
erosion in agricultural areas.

Soil applications
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2. Soil parameters: surface roughness et soil
moisture

Definition, in situ measurements
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2.1 Soil roughness



Lebanon – June 2022

• Description of soil roughness

 Several techniques can be used to measure soil roughness: pin
profilometer, laser profilometer, and 3D photogrammetry.

 The use of the laser or 3D photogrammetry allows for the accurate
rendering of soil roughness (high spatial resolution) with a precise
estimation of the roughness parameters, Hrms and L.

 As regards the correct characterization of soil roughness using a pin
profilometer, it is necessary to have (1) long roughness profiles or
several short profiles and (2) a relatively fine horizontal resolution
from the profilometer (small sampling interval, x).

Description of soil roughness

1D profile from a pin profilometer

(1 m long and x = 2 cm)
2D profile from a laser scanner
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• Description of soil roughness

 For SAR applications, the description of the surface z(x) is based on the
calculation of the autocorrelation function (u), defined as: (1D case)

𝑧 is the average height of altitudes measured from the roughness profile
z(x).

 Generally, two roughness parameters are used and estimated based on
the autocorrelation function:

• The standard deviation of the surface height (root mean square surface height,
Hrms), defining the vertical scale of the roughness and computed as:

• The correlation length (L), usually defined as the horizontal displacement for which
the autocorrelation function of the profile decreases to 1/e.

Description of soil roughness

u= < [z(x+u)-<z>] [z(x)-<z>] >

Hrms² = (0) = < [z(x)-<z>]² >
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• Description of soil roughness

 When the roughness is weak and the soil is smooth (Hrms
approximately inferior to 1 cm), the autocorrelation function has a
generally exponential shape.

 For higher roughness, the autocorrelation function has a shape close
to a Gaussian.

 Zribi [ZRI 98] introduced the fractal dimension to the description of
the autocorrelation function’s shape for bare soils in agricultural
fields. For one-dimensional roughness profiles:

 = -2D+4, D is the fractal dimension between 1.25 and 1.45 

autocorrelation function power a between 1.1 and 1.5.

Description of soil roughness
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• Description of soil roughness

 In the case of agricultural surfaces with periodic structures (rows,
with P periods), the autocorrelation function could be described by
(in the case of a Gaussian shape, for example):

 The second term models the directional roughness variations as a
narrowband Gaussian random process, centered on a frequency
(1/P) and a band length of 2/LS. A Fourier transform of this term
allows the deduction of the 3 parameters describing the directional
structure (the intensity S, the periodicity P, and the correlation
length LS).

Description of soil roughness
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2.2 Soil moisture
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• Description of soil moisture

 There are two commonly used techniques for the measurement of
soil moisture content: gravimetry and Time-Domain Reflectrometry
(TDR) (or Theta Probe analysis).

 The gravimetric method, while destructive and complicated to
implement, remains a reference for the calibration of different
equipment used to measure soil moisture.

 The gravimetric method consists in using a cylinder to collect soil
samples, which are then placed in an oven at 105ºC for 24h. This
method determines the ponderal water content (Wp) of a soil
sample by comparing the wet weight (Ph) of the sample with its dry
weight (Ps):

 The volumetric water content mv (in cm3.cm-3 or vol. %) is deduced
from the ponderal water content using the soil’s apparent density
(Da=Ps / volume of the cylinder):

Soil moisture








 


Ps

PsPh
ggWp 100).( 1

WpDamv .
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• Description of soil moisture

 The TDR probe consists in emitting an electromagnetic microwave
pulse along 2 (sometimes 3) waveguides of a given length, inserted
into the soil, and measuring the transit time of the return signal.

 TDR measurements are not valid for frozen soils

 In-situ soil moisture data is generally collected simultaneously with
radar acquisitions.

 The distribution and spatial density of these measurements depend
upon the level of heterogeneity of reference plots (intra-plots
variations) and their size. A minimum of 20 measurements is
generally taken for each reference plot (measuring at least one
hectare).

Soil moisture



Lebanon – June 2022

• Description of soil moisture

 Bruckler et al. [BRU 88] found that the penetration depth of the
radar signal in C-band for a clay loam soil decreases from 5 to 1 cm
when the soil moisture increases from 10 to 30 vol. % .

 The dielectric constant is a physical quantity also known as complex
permittivity. The real part ε' affects the moisture content more,
while the imaginary part ε" essentially depends on the electrical
conductivity of the soil solution.

 The empirical relationship between the volumetric water content of
soil and its dielectric constant described by Topp et al. [TOP 80] is
also widely used for its simplicity. This relation only allows the
derivation of the real component of the dielectric constant:

43 10.)043.0²5.5292530(  mv

Soil moisture
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3. Behaviour of radar signal
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3.1 Penetration depth of radar wave
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 When performing studies using radar images in L, C, and X bands for
the characterization of the soil surface moisture in agricultural areas,
in-situ measurements of soil moisture are taken at a depth between
0 and 10 cm.

 The measurement depth is related to the penetration depth of the
radar wave (p) that is generally equal to a few centimeters in C and
X bands. In L-band, this depth can reach a few tens of cm for very dry
soils.

 The thickness of this surface layer depends on the radar wavelength
() (more penetration with greater wavelengths) and the dielectric
constant of soil (water content and soil composition) [ULA 78]:

ε' is the real part of the dielectric constant and ε" its imaginary part.

 Longer  (P and L bands) can penetrate deeper than shorter  (C and
X bands)

Penetration of radar wave

''

'

2 


 p
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 Relationship between soil volumetric water content (mv) and its dielectric
constant from Topp et al. (1980). It allows the calculation of the real
component of the dielectric constant (ε'):

mv = (-530 + 292 ε' - 5.5 ε'² + 0.043 ε'3).10-4

 A more detailed relationship proposed by Hallikainen et al. (1985):

 = ε' – j. ε'‘

 The coefficients a0r , a1r , … , c2i depend on radar frequency

 Sand = percent of sand in the soil ; Clay = percent of Clay in the soil

ε' = [a0r + a1r . sand + a2r . clay]

+[b0r + b1r . sand + b2r . clay].mv

+ [c0r + c1r . sand + c2r . clay].mv²

ε'‘ = [a0i +a1i . sand + a2i . clay]

+ [b0i + b1i . sand + b2i . clay].mv

+ [c0i + c1i . sand + c2i . clay].mv²

Relationship between moisture and dielectric constant
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 From Hallikainen et al.
(1985):

 Field 1: 52% sand, 13% clay,
35% Silt

 Field 5: 5% sand, 47% clay, 48%
Silt

 Observations:
 ε' et ε'' increase when mv

increases

 ε' higher for soils with more
sand p higher

 ε'‘ lower for soils with more
sand only if the soil is very wet
// otherwise ε'' changes slightly
if mv <20 vol.%

 For radar frequency = 5 GHz (=6 cm) and
mv=20 vol.%

Field 1: ε' = 11 et ε'' = 2 p= 2.2 cm
Field 5: ε' = 7 et ε''= 2 p= 1.8 cm

 More penetration in the sand

 For radar frequency = 1.4 GHz (=21 cm)
and mv=20 vol.%

Field 1: ε' = 10 et ε'' = 2.5 p= 7 cm
Field 5: ε' = 7 et ε''= 2.5 p= 6 cm

More penetration for high 

Penetration of radar wave



Penetration in arid areas

 Since the penetration depth of the radar wave is proportional to the radar
wavelength, it is possible in desert region using long wavelengths to highlight
hydrographic networks covered by a layer of sand (of several m) and which
are invisible on optical images.

Radar ImageOptical Image

Radar ImageOptical Image
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3.2 Sensitivity of radar signal to soil
parameters
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Approach for mapping soil parameters

Radar observation parameters:
(frequency , incidence angle,…)

Soil surface parameters:
(soil moisture, roughness..)

MODELLING RADAR BACKSCATTERING

Radar 
Backscatter σ0

Electromagnetic backscattering
Models

(Kirchoff, Dubois, Oh,
Integral Equation Model …)

RADAR SIGNAL INVERSION

 Remote Sensing

« Radar » 
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 Perform a bibliographic analysis to identify, for example, the optimal
instrumental parameters capable of mapping (1) roughness, (2) soil
moisture, etc.

 Choose control agricultural plots on which roughness and moisture
measurements are taken in situ measurements

 Create a vector file with control plots or "AOI: Area Of Interest“

 Processing radar images: radiometric calibration, georeferencing

 Warning: Select control plots of 100 radar pixels and more to have relevant
statistics (minimize the speckle effect / noise effect)

Practical instructions (1/2)



 Calculate statistics using the vector file or AOIs: average radar
signal

 The images calibrated in linear scale must be used for the calculation of the average
radar signal on a given plot or an AOI

 Once the average radar signal has been calculated (in linear scale), the signal is
calculated in decibel (dB) scale using the formula:

° in dB = 10 . log10 (° in linear scale)

 Analyze signal behavior based on sensor and ground parameters

 Model the radar signal or validate existing models

 Extract useful information by inverting the radar signal (surface
roughness/moisture, etc.)

Practical instructions (2/2)
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3.2.1 Sensitivity of radar signal to roughness



 Soil roughness plays an important role in the runoff/infiltration ratio.

 Runoff occurs when the intensity of precipitation exceeds the infiltration
capacity of the soil.

 In addition to vegetation, soil roughness also plays a role in trapping water
in agricultural areas, which increases infiltration and in turn reduces
downstream runoff.

 In agricultural areas, bare soils are most implicated in the risk of runoff and
erosion.

 Watershed-scale monitoring tools are needed to improve flood prediction
monitoring of surfaces that may contribute runoff.

An application example : Excess runoff and remote sensing

Interest of soil roughness
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 Smooth soils have commonly a poor infiltration capacity compared to rough soils

Interest of soil roughness
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 Smooth surfaces : reflect almost all incident energy away from the radar,
are called specular reflectors. They appear dark on radar images (calm
water, etc.) weak radar signal

 Rough surfaces : scatter incident microwave energy in many directions
(diffuse reflection). They therefore appear as clear areas on the radar
images strong radar signal

 For a given , a surface appears smoother as  increases.

Radar signal and soil roughness



Lebanon – June 2022

° in dB 

High roughness:
tillage

Low roughness

Radar signal and soil roughness
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Behavior of radar signal as a function of surface roughness (rms)

> For bare soils, ° increases and follows exponential function with rms.

> Extraction of surface roughness is better at high incidence angle: a good indicator for
monitoring surfaces potentially contributing to runoff.

> Dependence of radar signal on surface roughness in agricultural areas is mainly
significant for low levels of roughness.
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sigma_0 [dB] = -9.81 - 9.46 exp (-k rms)  ;  R² = 0.76
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Sensitivity of radar signal to soil roughness

Each point corresponds to the average radar signal and the associated roughness
measurement (N averaged measurements)
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 To analyze the sensitivity of the radar signal to soil roughness according to
radar wavelength (), ° is ploted according to k.Hrms with k = wave
number= (2)/
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 We observe a sensitivity of ° to k.Hrms only for k.Hrms < 1:

 In X-band: it corresponds to Hrms < 0.5 cm
 In C-band: it corresponds to Hrms < 1 cm
 In L-band: it corresponds to Hrms< 4 cm

 Better sensitivity of ° to Hrms for sensors at high 

Bande X Bande C Bande L

 = 3 cm  = 6 cm  = 25 cm

k ~ 2 cm-1 k ~ 1 cm-1 k ~ 0,24 cm-1

Sensitivity of radar signal to soil roughness



Lebanon – June 2022

 The sensitivity of ° to Hrms is significant for low Hrms: at 47°, ° increases
of 5 dB (-18  -13 dB) when Hrms increases from 0.25 to 1 cm. It increases
only of 1 dB (-11 -10 dB) when Hrms increases from 2 to 4 cm

 Possibility of extracting 2-3 classes of roughness  a good indicator for
mapping the surfaces contributing to runoff
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 The best sensitivity of the signal to Hrms is
observed at high incidences

 Theoretical and experimental work shows a
slightly higher sensitivity of the signal to the
roughness of bare soils in HH polarization

 The radar signal increases with Hrms according to
an exponential/logarithmic law up to a certain
threshold

Sensitivity of radar signal to soil roughness
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 Radar signal backscattered by a bare soil increases with Hrms
according to a logarithmic or exponential law to then becomes
constant after a certain roughness threshold (depends on the
wavelength and the radar’s incidence angle).

 Several studies show saturation of the radar signal after k.Hrms below
roughly 1. This threshold corresponds to Hrms values of 4 cm in L-
band, 1 cm in C-band, and around 0.5 cm in X-band.

 The dynamic of the radar backscattering coefficient is weaker in the
case of weak incidence angles (variation of 7 dB for 20º-25º) than in
the case of strong incidence angles (variation of 10 dB for 45º-50º).

 Theoretical and experimental works show a slightly stronger sensitivity
of the signal to the roughness of bare soil in HH polarization.

 Only large wavelengths (e.g. L-band) and strong incidence angles (e.g.
45º) allow to map three roughness classes (smooth “sowing,” rough
“great plowed soil,” moderately rough “small plowed soil”) [BAG 02].

Sensitivity of radar signal to soil roughness



Optimal radar configuration

Classification of roughness classes Areas contributing to runoff

Optical Image
In situ measurements:

Hrms an mv
Radar Images: 

°()

Relationship: °(Hrms, mv)Apply mask to keep
bare soils / Low NDVI

: incidence angle

Hrms: roughness

mv: soil moisture

Image with “1” for bare
Soils and “0” for other

Soil roughness mapping



Areas contributing to runoff

rms
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RADARSAT 47°

sigma_0 [dB] = -9.81 - 9.46 exp (-k rms)  ;  R² = 0.76

 RADARSAT 50°

Assess to areas contributing to runoff

Use of radar images for the mapping of surfaces potentially contributing to runoff in 
an agricultural context:
 Low roughness: High runoff potential 
 High roughness: Low runoff potential
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3.2.2 Sensitivity of radar signal to soil
moisture
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 Spatio-temporal monitoring of soil moisture in agricultural areas is of
great importance for various applications: agriculture, hydrology, risks…

 The use of in situ sensors makes it possible to ensure monitoring, but
this technique is very expensive and can only be carried out on a very
small agricultural sector, hence the importance of spatial remote
sensing, which today allows operational and large-scale mapping of soil
moisture, with high spatio-temporal resolution.

 Early work to estimate and map surface moisture with radar imagery
was done primarily on bare soils.

 In the presence of vegetation, the coupling of radar and optical data is
essential to be able to estimate the soil moisture. Indeed, optical data
are complementary to radar data, and their interest lies in their
potential to estimate the physical parameters of vegetation, for example
the Normalized Difference Vegetation Index (NDVI) or the foliar (Leaf
Area Index, LAI)

Interest of soil moisture
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 The radar signal increases with soil moisture

Low moistureHigh moisture

° in dB 

Soil moisture and radar signal
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Soil moisture and radar signal
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 Dry surfaces weak radar signal

 Wet surfaces strong radar signal

 The signal increases with humidity according to a logarithmic law for
humidity not exceeding 35-40 vol.% (this value corresponds to a
saturated soil)

 This logarithmic function corresponds to a linear function for humidity
between 10 and 35 vol.%

 From moistures of 35-40 vol.% (we begin to have water in a free state
because the soil is saturated), the radar signal stops increasing and then
begins to decrease with increasing moisture. Thus, the estimation of the
surface moisture is no longer possible without ambiguity after this
moisture threshold of 35-40 vol.%

Soil moisture and radar signal
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 The sensitivity of radar signal to soil moisture (S) decreases when the
incidence angle or the radar wavelength increases!

 Optimal radar configuration radar for a better sensitivity of radar signal to
moisture low incidence (15°-35°)

 In C-band (Sentinel-1), S ~ 0.15 dB/vol.% for  = 35°. For  = 20°-25°, S
~ 0.2 dB/vol.%  this means that the C-band radar signal increases by
about 1 dB if the humidity increases by 5 vol.%

 S is twice as high in X band (=3 cm) than in C band (~0.35 dB/vol.% in X-
band versus 0.15 dB/vol.% in C band)

 S is of the same magnitude in L and C bands

 S is better at low  or at low  because the influence of the soil
roughness is low

Soil moisture and radar signal
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 Optimal configuration for obtaining the best sensitivity of the radar
signal to soil moisture (weak influence of the roughness): HH
polarization and a weak radar incidence angle: 15º-35º

 Simulations illustrate an approximately logarithmic law between soil
moisture and the radar signal.

 This logarithmic function is generally approximated by a linear
function for soil moisture between 10 and 35 vol. %.

 After a soil moisture of around 35 vol. %, the radar signal stabilizes,
then starts to decrease with the increase of soil moisture, so the
estimation of soil moisture cannot be done without ambiguity after
this threshold of around 35 vol. %.

 In C-band, sensitivity of radar signal to soil moisture, approximately
between 0.15 dB/vol.% and 0.3 dB/vol. %.

 The signal’s sensitivity to soil moisture is twice as high in X-band as in
C-band (~0.35 dB/vol. % in X-band vs. 0.15 dB/vol. % in C-band).

 Observations in L-band have approximately the same range of
sensitivity to soil moisture as in C-band.

 The sensitivity of the signal to soil moisture decreases when the
incidence angle increases.

Sensitivity of radar signal to soil moisture
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3.2.3 Sensitivity of radar signal to soil salinity
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Salinization is a chemical process that leads to the degradation of arable
soil, desertification, and biomass reduction.

Despite the dominant effect of moisture and roughness on the radar
signal, salinity also has a significant effect.

The influence of salinity is more pronounced on the imaginary part than on
the real part of the dielectric constant ε.

In the imaginary part (ε''), the influence of soil salinity is coupled with
moisture. The higher the moisture content, the stronger the effect of
salinity on ε''. This is mainly due to the solubility of salts in water leading to
an increase in the electrical conductivity of the soil, thus leading to an
increase in the imaginary part.

Soil salinity and radar signal
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Few experimental works has been done for the estimation of salinity from
radar images.

Simulations of the radar backscatter coefficient show an increase in the
simulated signal with increasing salinity.

The optimal configurations for salinity estimation from radar data are wet
soils, low frequency (e.g. L-band), strong incidence angle and VV polarization
(Lasne et al., 2008).

Soil salinity and radar signal
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Radar backscatter coefficient simulated by the Integral Equation Model (IEM)
in L-, C-, and X-bands (40° incidence) as a function of soil water status for
two salinity conditions (S=0 and S=100‰):

 A potential for salinity estimation only in L-band: The radar signal increases
by 2 dB when moving from zero salinity (S=0‰) to saline soil (S=100‰) for
moisture > 15 vol.%.

Soil salinity and radar signal
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3.2.4 Sensitivity of radar signal to soil
freezing
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The results show that the radar backscatter coefficient decreases when the
soil temperature falls below 0°C

A difference of at least 2 dB is observed in C-band between unfrozen and
frozen soils (Baghdadi et al., 2018)

Both VV and VH polarizations provide good detection of frozen soils but that
the sensitivity of VH is about 1.5 dB higher

Discrimination of frozen soils decreases slightly with decreasing soil moisture

 The difference between a reference image acquired without frost and an
image acquired under frost conditions is a good tool for detecting frozen soils.

Soil freezing and radar signal
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Analysis of Sentinel-1 radar signal behavior over a wheat field (C, VV and VH):

σ°VV decreases by 3-4 dB for dates of heavy frost (soil temperature ~ -3.7°C):
between Jan. 18 and 26, 2017.

A slight decrease of about 1.5 dB was also found in σ°VV when the ground was
slightly frozen (Feb 11, 2017, ground temperature = -0.6°C).

 The difference
between σ°VH of
unfrozen soil and σ°VH
of frozen soil is 1 to 2
dB greater than the
results obtained with
VV polarization.

Soil freezing and radar signal
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4. Modeling of the radar signal



Lebanon – June 2022

4.1 Bare soil case
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 Numerous radar backscattering models have been developed to
analyze the radar signal’s sensitivity to the soil’s physical parameters
(roughness and water content in particular) and instrumental
parameters (frequency, incidence and polarization).

 In order to define the best radar configuration for estimating soil
parameters: wavelength choice, pertinence of multi-polarization and
polarimetric modes as compared to a mono-polarization mode.

 Different physical analytical models have been developed to
simulate radar backscattering of the soil’s surface  limited to
domains of validity due to the considered physical approximations:
 the Small Perturbation Model aqdapted to surfaces with a low roughness

 the IEM (Integral Equation Model) model developed by Fung et al.

 …

Modeling of radar backscattering on bare soil

3.0. Hrmsk 3.0/2 LHrms

3kHrms

     25.0sin192.0exp46.0)²cos(   LkHrmskHrmsk     25.0sin192.0exp46.0)²cos(   LkLkHrmsk

     25.0sin192.0exp46.0)²cos(  LkLkHrmsk
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 Semi-empirical models: Dubois, Oh, Baghdadi, …

 In most semi-empirical models, soil roughness, unlike physical models, is
parameterized only by the standard deviation of heights (Hrms)

 These models cover much more important ranges of validity than those
of physical models and they are better adapted to an operational use for
the inversion of radar data.

Description of the Dubois model

k: radar wave number (k), Hrms the soil’s volumetric water content (mv)

Domain of validity is:

k Hrms  2.5

mv  35 % vol.

  30°

Modeling of radar backscattering on bare soil
     25.0sin192.0exp46.0)²cos(   LkHrmskHrmsk     25.0sin192.0exp46.0)²cos(   LkLkHrmsk
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Description of the Oh model:

 Oh et al. developed a semi-empirical backscattering model with
numerous versions between 1992 and 2004.

 p=°HH/°VV , q=°HV/°VV and °HV are defined as:

k: radar wave number (k), Hrms the soil’s volumetric water content (mv)

Oh model’s domain of validity is:

0.13< k Hrms  6.98

4 < mv (% vol.)  29.1

10°≤  ≤ 70°

Modeling of radar backscattering on bare soil
     25.0sin192.0exp46.0)²cos(   LkHrmskHrmsk     25.0sin192.0exp46.0)²cos(   LkLkHrmsk
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Description of the Baghdadi model

 A new semi-empirical radar backscattering model on bare soil surfaces
based on the Dubois model using a wide dataset of backscattering
coefficients (in X, C and L bands) extracted from SAR (synthetic aperture
radar) images and in situ soil surface parameter measurements
(moisture content and surface roughness):

 The radar signal in polarization pq (=HH, VV and HV) is the product of a
function that depends on 𝜃, a function that depends on mv and a third
function that depends on the roughness (in linear scale) :

𝜎𝑝𝑞
° = 𝑓𝑝𝑞 𝜃 𝑔𝑝𝑞 𝑚𝑣, 𝜃 Γ𝑝𝑞(𝑘𝐻𝑟𝑚𝑠, 𝜃)

Modeling of radar backscattering on bare soil
     25.0sin192.0exp46.0)²cos(   LkHrmskHrmsk     25.0sin192.0exp46.0)²cos(   LkLkHrmsk
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Description of the Baghdadi model

 After optimizing, we have:

: incidence angle, expressed in radians and mv is in vol.%.

The new model shows that this condition is satisfied when:

20°<  <45°

kHrms < 6

mv < 35 vol.%

Modeling of radar backscattering on bare soil
     25.0sin192.0exp46.0)²cos(   LkHrmskHrmsk     25.0sin192.0exp46.0)²cos(   LkLkHrmsk

𝜎𝐻𝐻
° = 10−1.287(𝑐𝑜𝑠 𝜃)1.227  100.009 𝑐𝑜𝑡𝑎𝑛 (𝜃) 𝑚𝑣  (𝑘𝐻𝑟𝑚𝑠)0.86 𝑠𝑖𝑛⁡(𝜃) 

𝜎𝑉𝑉
° = 10−1.138(𝑐𝑜𝑠 𝜃)1.528  100.008 𝑐𝑜𝑡𝑎𝑛 (𝜃) 𝑚𝑣  (𝑘𝐻𝑟𝑚𝑠)0.71 𝑠𝑖𝑛⁡(𝜃) 

𝜎𝐻𝑉
° = 10−2.325(𝑐𝑜𝑠 𝜃)−0.01  100.011 𝑐𝑜𝑡𝑎𝑛 (𝜃) 𝑚𝑣  (𝑘𝐻𝑟𝑚𝑠)0.44 𝑠𝑖𝑛⁡(𝜃) 
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IEM calibrated by Baghdadi: IEM_B

 IEM is the best known physical model

 Numerous studies have assessed the different radar backscattering
models. Most of the time, strong differences have been observed
between model simulations and real SAR data able to reach several
decibels, making the results of radar signal inversion imprecise. This
difficulty of accurately modeling the real radar signal is particularly
linked to complexity of describing and measuring the soil’s
roughness parameters (autocorrelation function, correlation length,
and standard deviation of heights) precisely.

 Baghdadi et al. [BAG 06, BAG 11a, BAG 11b, BAG 15] proposed a
semi-empirical calibration of the IEM backscattering model with the
intention of better reproducing the radar backscattering coefficient
of bare soils. This calibration replaced the measured correlation
length, which is the least precise roughness parameter, with a forcing
parameter. The results showed that the calibration parameter
depends on Hrms, radar incidence angle (), and radar frequency.

Modeling of radar backscattering on bare soil
     25.0sin192.0exp46.0)²cos(   LkHrmskHrmsk     25.0sin192.0exp46.0)²cos(   LkLkHrmsk
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IEM calibrated by Baghdadi: IEM_B

The calibration parameter Lopt obtained with a Gaussian autocorrelation
function is described as follows:

 is in radians

Lopt and Hrms are in centimeters.

Lopt was obtained with a Gaussian autocorrelation function

This calibration has been performed using numerous databases, acquired at numerous study
sites, with different radar sensors (ERS, JERS, RADARSAT, ASAR, PALSAR, TerraSAR-X, COSMO-
SkyMed, SIR-C/X), with incidence angles from 23º to 57º, and HH, HV, and VV polarizations.

Modeling of radar backscattering on bare soil
     25.0sin192.0exp46.0)²cos(   LkHrmskHrmsk     25.0sin192.0exp46.0)²cos(   LkLkHrmsk
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Using single SAR configuration : 1 date, 1 polarization, 1 incidence angle

 Simple empirical relationships: built using reference data collected on study
sites. These reference data refer to in-situ measurements of soil moisture and/or
roughness, as well as the mean of the backscattering coefficient on each reference
plot calculated using acquired radar images.

- linear for the soil moisture
- logarithmic (or exponential) for soil roughness

 Radar backscattering coefficient (in decibels) is defined by a single soil
parameter (soil moisture or roughness), while the other soil parameter is assumed
to be constant or have little effect on the radar signal (this configuration only allows
one soil parameter to be determined at a time).

 SAR sensors’ parameters chosen to increase the signal’s sensitivity to the soil
parameter to be estimated (e.g. moisture) and to minimize the effect of the other
soil parameters (e.g. roughness).

Estimation of soil parameters: bare soil
     25.0sin192.0exp46.0)²cos(   LkHrmskHrmsk     25.0sin192.0exp46.0)²cos(   LkLkHrmsk

1

0 bmvdB  

2

0 )(log bHrmskdB  
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Using multi-incidence SAR data: one image with a weak incidence (weak~20°)
and one image with a strong incidence (strong~40°).

The roughness parameter Hrms can be
estimated by using the relation:

Estimation of soil parameters: bare soil
     25.0sin192.0exp46.0)²cos(   LkHrmskHrmsk     25.0sin192.0exp46.0)²cos(   LkLkHrmsk
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Using multi-polarization SAR data: 2 polarizations, same date, same
sensor, same acquisition

• Two polarizations does not improve the estimation of soil moisture, for
example, in comparison with cases where a single polarization is used. In fact, the
improvement is less than 1 vol. % [BAG 06].

Using polarimetric SAR data: HH, HV, VH, VV

• Hajnsek et al. [HAJ 03] have shown that entropy and the alpha angle (derived
from the Cloude decomposition) in L-band increase with soil moisture and that
anisotropy is independent of the soil moisture. Furthermore, it has been shown
that entropy increases with Hrms, that the alpha angle is independent of Hrms, and
that when k.Hrms increases to 1, anisotropy decreases in an almost linear way.

• Contrary to the results obtained in L-band, the results obtained in C-band show
that the use of polarimetric parameters (entropy, alpha angle, anisotropy …) do not
significantly improve the estimation of the soil moisture and roughness in
comparison with methods that only use the backscattering coefficients in
polarizations HH, HV, or VV [BAG 12b].

Estimation of soil parameters: bare soil
     25.0sin192.0exp46.0)²cos(   LkHrmskHrmsk     25.0sin192.0exp46.0)²cos(   LkLkHrmsk
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Using multi-date SAR data
• Two polarizations does not improve the estimation of soil moisture, for
example, in comparison with cases where a single polarization is used. In fact, the
improvement is less than 1 vol. % [BAG 06].

• In order to estimate the soil moisture in semi-arid zones, where it can be
assumed that the soil roughness is constant throughout the year, the difference
(Δσ°) between an image from the wet season and an image from the dry season is
used (effects of roughness are eliminated):

Δσ°dB =  (mvwet season – mvdry season) =  Δmv

Estimation of soil parameters: bare soil
     25.0sin192.0exp46.0)²cos(   LkHrmskHrmsk     25.0sin192.0exp46.0)²cos(   LkLkHrmsk
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4.2 Case of agricultural soils with vegetation



Lebanon – June 2022

 Spatial and temporal monitoring of soil moisture on plots with

vegetation cover is a key parameter for different applications, especially

for irrigation management.

 Different physical and semi-empirical models have been developed to

quantify the contribution of the vegetation in the received radar signal in

order to extract the soil contribution and estimate its moisture.

 The most widely used model is the Water Cloud Model (WCM): a very

simple but very efficient semi-empirical model developed by Attema and

Ulaby (1978).

Estimation of soil parameters: soils with vegetation
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 σ0
tot  : Total backscattered radar signal (linear unit)

 σ0
veg : Vegetation contribution (linear unit)

 T2 : Two-way attenuation

 σ0
soil : Soil contribution (linear unit)

 V1 = V2 : Vegetation descriptors (BIO (kg/m2), VWC 

(kg/m2), HVE (m), LAI (m2/m2), NDVI …)

 θ : Radar incidence angle; sec (θ) = 1/ cos (θ)

 A et B: Parameters depending on the canopy 

descriptors and radar configurations

 Mv: Volumetric soil moisture (Vol.%)

 C: dependent on roughness and incidence angle

 D: sensibility of radar signal to Mv in the case of bare 

soils, dependents on radar configurations

σ0
tot = σ0

veg + T2 σ0
soil

σ0
veg = A.V1.Cos θ  (1- T2) 

T2 = Exp (-2.B.V2.sec θ) 

σ0
soil = C(θ) exp (D.Mv)

Soil with vegetation

Multiple soil-vegetation diffusions (often neglected)

Water Cloud Model (WCM)
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 The soil contribution can be simulated from a physical model (IEM), by a

semi-empirical model (Oh, Dubois, Baghdadi), or by using a simplified

expression of the soil contribution that takes into account the soil

moisture and roughness (in linear scale):

 C is a parameter that depends on the soil roughness and the radar

configuration.

 D is the sensitivity of the radar signal (linear unit) to bare soil moisture

(it depends on the radar configuration).

 This expression assumes that the soil signal is the sum of a contribution

related to the soil moisture (in dB), and another related to the roughness

(in dB).

mvDo

sol eC

Water Cloud Model (WCM)
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 Data ° from SAR images, field measurements of soil parameters

(moisture and roughness, or moisture alone if the effect of roughness is

neglected), and measurements on vegetation descriptors (in situ or from

imagery, optical in particular) are needed to fit the WCM model and

estimate the A, B, C, and D parameters.

 Baghdadi et al. (Remote Sensing, 2017) calibrated WCM using C-band

radar data at two study sites, one in France and one in Tunisia (winter

wheat, grassland, and fallow). The soil contribution was modeled using

IEM modified by Baghdadi et al. (using Lopt instead of L):

Water Cloud Model (WCM)



Lebanon – June 2022

Behaviour of WCM components (σ°veg, T
2σ°sol, and σ°tot) in HH according to LAI. 

Black points represent SAR data (σ°tot: validation dataset) associated to Mv measurements 

situated at ±5 vol. % of the Mv used in the modelling.

Results : Modeling results
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Results : Modeling results

Behaviour of WCM components (σ°veg, T
2σ°sol, and σ°tot) in HH according to Mv.

Black points represent SAR data (σ°tot: validation dataset) associated to LAI measurements 

situated at ±0.25 m2/m2 of the LAI used in the modelling. 
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5. Estimation of soil moisture
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 Soil moisture mapping in agricultural areas at plot scale is very usefull for many
applications such as hydrology, agriculture and risk assessment.

 Currently, several satellite missions provide surface soil moisture estimations at
different spatial resolutions (low to medium spatial resolutions):

 SMAP: 36 km x 36 km, 9 km x 9 km, 1 km x 1 km

 ASCAT: 25 km x 25 km, 12.5 km x 12.5 km, 1 km x 1 km

 SMOS: 25 km x 25 km

 New: Copernicus Land distributes the first soil moisture estimations over
the European continent at 1-km using S1 data: algorithm based on the
University of Technology Wien Change Detection Model

Introduction
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 Sentinel-1 SAR satellites provide C-band SAR data :

 in free open access mode

 At high spatial resolution (10 m x 10 m) and high revisit time (6 days)

 encourage the development of an operational algorithm for soil moisture
mapping at high spatial resolution

 An operational approach for mapping soil moisture at high spatial resolution (plot
scale) in agricultural areas was developed by coupling S1 and S2 images:

 based on the inversion of the Water Cloud Model (WCM) combined with
the modified IEM, and using the neural networks technique

 S²MP: Sentinel-1/Sentinel-2 derived soil Moisture at Plot scale

Introduction
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Simple model with one band (= one information from SAR sensors):

 The simplest empirical model (1 band = one incidence and one

polarization):

 This expression is built on a given site independently of the roughness for

one polarization and a range of incidence angles

 Once this expression constructed from a database (some control plots),

the moisture can be estimated everywhere on the same radar image with:

mvest = [°(dB) – b1] / 

1

0 bmvdB  

Estimation of soil moisture
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 Two bands = 2 wavelengths, 2 angles of incidence or 2 polarizations

 One sensor = 1 wavelength

 One sensor, for a given plot, at a given date = 1 angle of incidence

 One sensor = 1, 2 or 4 polarizations

Estimation of soil moisture
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Simple model with two bands:

 Example of radar images acquired at two angles of incidence: a weak

angle~20° and a strong angle~40°:

 In this case, the radar signal is written as the sum of a function that

describes the dependence of the signal on moisture and a function that

describes the dependence of the signal on roughness (in dB).

 The moisture combining the two images can be written as follows:

 From a database collected [ , , mv]i=1...n on several

control plots (n), the parameters A, B and C are estimated and the above

equation can be applied to all the agricultural plots of the study site for

the estimation of moisture.

Estimation of soil moisture
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 Case 1: Estimation of mv with a simple linear relationship between ° at

one band and mv: relationship valid only for the study site, at a given date,

for a given incidence/polarization  unreliable estimate because the

effect of roughness is not taken into account (accuracy at best 6 vol.%).

 Case 2: Estimation of mv with a linear relation between ° at 2

incidences and mv: Unlikely to have 2 images acquired at two incidences

with stable humidity conditions  If feasible, very good estimate of mv

because the effect of roughness is taken into account (accuracy 2 times

better than case 1, RMSE on mv ~ 3 vol.%).

 Case 3: Estimation of mv with a linear relationship between ° at 2

polarizations and mv: Quite possible but the ° at the different

polarizations are strongly correlated  configuration not very relevant

because the accuracy is better only by about 1 vol.% compared to case 1.

Accuracy of mvest from empirical relations
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Estimation of soil moisture: Neural network

Our aim was to develop an operational approach for mapping soil
moisture at high spatial resolution (up to the plot scale) in agriculture
areas by coupling S1 and S2 images.

 The proposed approach is based on the inversion of the Water Cloud
Model (WCM) using the neural network (NN) technique.

The use of the new S1 and S2 data for operational soil moisture mapping
in agricultural areas with high revisit time and at the plot scale is an
innovative use of spatial imageries
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 Free access to Sentinel data (radar: Sentinel-1 and optical: Sentinel-2)
encourages the development of an operational soil moisture mapping
algorithm

 The high spatial resolution of Sentinel data (10 m x 10 m) makes it possible to
map at the plot level

Moreover, the high revisit time of S1 (about 15 images per month) makes the
moisture product very interesting for many applications: irrigation for example

 An algorithm called S²MP (Sentinel-1/Sentinel-2 derived soil Moisture at Plot
scale) has been developed at UMR TETIS. It reverses WCM combined with IEM
modified by Baghdadi (integration Lopt instead of L) and uses neural
networks. It has been calibrated on field crop plots (wheat, barley, rape ...) but
also on grasslands.

The code can be downloaded at the reference: El Hajj M., Baghdadi N., Zribi M., 2018. Estimation

de l’humidité du sol par couplage d’images radar et optique. Chapitre book: Baghdadi N., Mallet C., et Zribi M. (eds), QGIS et
applications en agriculture et forêt, vol. 2, p. 15-58, 2018, ISTE Editions, 374 pp.

Estimation of soil moisture: Neural network
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NNs training:

Inputs  outputs:

noisy (VV, NDVI) + θ mv

noisy (VV, HV, NDVI) + θ mv
NN training

Validation (Bias, RMSE)

Parametrized WCM + IEM
Baghdadi et al, (2006,2011,2017)

Synthetic database 

of σ0

mv= 2:2:40

rms = 0.5:0.1:3.8

NDVI= 0:0.1:0.7

θ = 20:1:45

Add noise  close to real SAR data: 

Relative error on NDVI :15%

Absolute error on σ0 : ±0.7dB for VV

Noisy Synthetic

database of σ0

NN validation

Mapping soil moisture using

Real S1 and S2 data

S²MP: Description
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NN1 : VV + NDVI+ θ Mv

 mv < 25 vol % : bias = 2.7 vol % & RMSE = 5.5 vol % 

 mv > 25 vol % :  bias = −4.1 vol % & RMSE = 6.9 vol% 

S²MP: accuracy with synthetic Data
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NN1 : VV + NDVI+ θ Mv

S²MP: accuracy with synthetic Data
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NN 1 : VV + NDVI+ θ Mv

 Inversion was performed using real SAR data and NDVI derived from optical images
 Degradation when NDVI is high (mature crops)
 For some crops, moisture estimation on agricultural plots is no longer possible when

vegetation is well developed (NDVI <0.7)

S²MP: accuracy with real Data

Blue ellipses indicate very smooth
plots : underestimation of mv

Red dashed ellipses indicate
rough plots: overestimation of mv
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S²MP: soil moisture maps
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 Soil moisture maps over many sites in France and in the World (2016-2018, Time : 6

days, plot scale): http://www.theialand.fr/en/thematic-products

 Good coherence observed between the temporal evolution of the soil moisture

and the precipitation records

 S1-SM values increases following rainfall event and decreases after a period

without rainfall due to evaporation

Bazzi et al., RS, 2018

S²MP: soil moisture maps

Precipitation (mm) 0 - 5 10 - 40 > 40 5 - 10

Soil Moisture (Vol.%) < 15 15 - 20 20 - 25 > 25

After rainfall events

high moisture

Without rainfal

Low moisture

http://www.theia-land.fr/en/thematic-products
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French Land Data Center Theia : https://www.theia-land.fr/en/product/soil-
moisture-with-very-high-spatial-resolution/

Soil moisture maps on the Theia website
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