

EOReader

an remote-sensing open source python library

Context

- Satellite data: every sensor product is different (bands, storage, ...)
- Crucial to harmonize and increase the reliability of the production tools used in a industrialized framework
 (i.e. make them as sensor-agnostic as possible):
 - The developer can focus on **core** tasks (such as extraction) without taking into account the sensor characteristics
 - New sensors are added **effortlessly** (if existing in EOReader) and without any modification of any tool
 - Maintenance and testing are simplified and the code is more readable

Available constellations

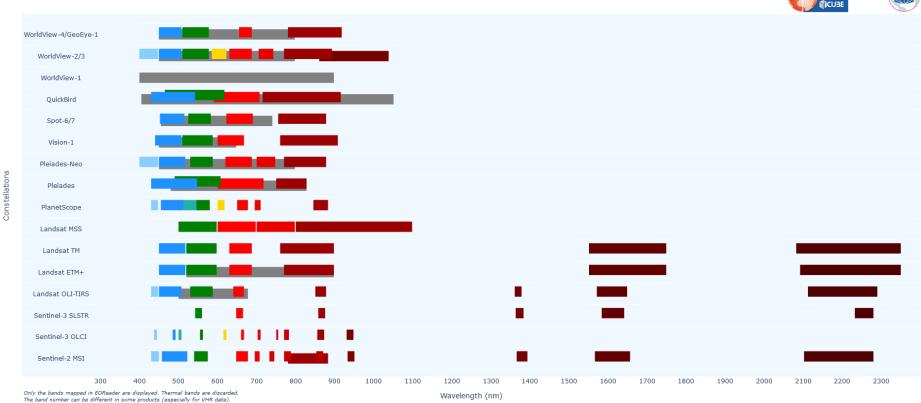
Optical constellations	SAR constellations
Sentinel-2 and Sentinel-2 Theia Sentinel-3 OLCI and SLSTR	Sentinel-1
Landsat 1 to 9 (MSS, TM, ETM and OLI)	COSMO-Skymed 1st and 2nd Generation
PlanetScope and SkySat	TerraSAR-X, TanDEM-X and PAZ SAR
Pleiades-Neo and Pleiades SPOT 6-7	RADARSAT-2 RADARSAT-Constellation
Vision-1	ICEYE
WorldView-1 to 4, GeoEye-1, QuickBird	SAOCOM-1

Main Features

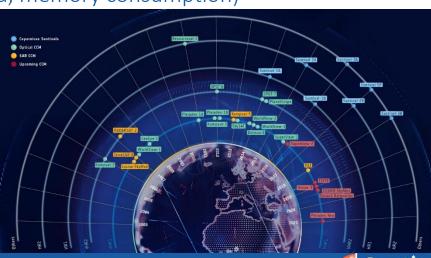
- **EOReader opens the satellite products agnostically**
 - Recognizes the constellation thanks to the product name and/or structure

- **Load** and **stack** bands the same way for every sensors:
 - Spectral and SAR bands: RED, NIR, SWIR, PAN, VV, VH...
 - > Spectral Indices, DEM bands, CLOUD bands
 - Always in reflectance (optical data), nodata removed
 - Always orthorectified and projected in UTM

Spectral Band Mapping


Band mapping between optical constellations

EOReader Spectral Band Mapping


About the project

- **EOReader:**
 - **Repository**: https://github.com/sertit/eoreader
 - **Documentation**: https://eoreader.readthedocs.io/en/latest/
- EOReader's future
 - Get rid of big non python external tools (such as ESA SNAP)
 - Make sure the code is **optimized** (speed, memory consumption)
 - Implement all of used CEMS sensors

Y Fork 5

★ Starred 57

Unwatch 4
 ▼

