

Núria Pantaleoni Reluy

Nuria.pantaleoni-reluy@inrae.fr

Summer School on Remote Sensing May 30th to June 3rd, 2022

OBJECTIVE	
-----------	--

WHAT	Show how to map the surface soil moisture over agricultural plots and grasslands			
HOW	FREE and OPEN SOURCE DATA SOFTWARE			
	 Radar : Sentinel I Optical : Sentinel 2 	- QGIS - SNAP - Python		

2 km

3

Study site located at 5 km east of Montpellier city, in the south of France

Sentinel I

Image acquired	17 / 04 / 2022
Product type	GRD – Ground Range Detected
Sensor mode	IW – Interferometric Wide
Orbit	Evening – number 59

Diurnal effects Morning Dew (moisture condensation) Freeze Detection

6

https://scihub.copernicus.eu/dhus/#/home

Sentinel 2

Image acquired	18 / 04 / 2022
Level	Level 2A FRE – Corrected for atmospheric and slope effects
Tile	T3ITEJ

https://theia.cnes.fr/atdistrib/rocket/#/search?page=I&collection=SENTINEL2&pr ocessingLevel=LEVEL3A

Land Cover

Lebanon	CNRS
France	Occupation du sol ¹ RPG ²
Europe	Corine Land Cover ³
World	Copernicus Global Land Cover ⁴

- https://theia.cnes.fr/atdistrib/rocket/#/search?collection=OSO
- ² <u>https://geoservices.ign.fr/rpg#telechargement</u>
- ³ <u>https://geoservices.ign.fr/rpg#telechargement</u>
- ³ <u>https://www.geoportail.gouv.fr/donnees/corine-land-cover-2018</u>
- ³ <u>https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=mapview</u>
- ⁴ <u>https://lcviewer.vito.be/2015</u>

- Two processing steps : CONSISTS
 - Radiometric calibration : Digital number \rightarrow Radar backscattering coefficient CONVERT

Geometric correction : → Orthorectified images (corrected for geographic location and slope effects)
 PROVIDE

- SNAP software :
 - Import image in Snap
 - Create a graph of processing chain :

- Calibration
- Ortho-rectification

9

- QGIS SOILWATE.
- Open B4 and B8 rasters
- "Raster calculator"
- "Re-projected" to WGS-84
- "Clip" to site extent

Parámetros Registro Expression Capas Operadores SENTINEL2B_20220323-104852-167_L2A_T3 * COS log10 + sen Y SENTINEL2B_20220323-104852-167_L2A_T3 arcos arcsen 0 ^ raíz cuadrada tan atan != 4 > = <= >= Expresión 100*(("SENTINEL2B_20220323-104852-167_L2A_T31TE)_C_V3-0_FRE_B8@1"-"SENTINEL2B_20220323-104852-167_L2A_T31TEJ_C_V3-0_FRE_B4@1")/ ("SENTINEL2B 20220323-104852-167 L2A T31TEJ C V3-0 FRE B8@1" + "SENTINEL2B 20220323-104852-167 L2A T31TEJ C V3-0 FRE B4@1")

4°17.25′E

13

0

2 km

N

Land Cover Mask

QGIS software :

- Open Land Cover image
- "Raster Calculator" + Super Impose (OTB)
 - Expression :

5 :Winter oilseed	10 : Corn
6 : Straw cereals	II:Rice
7 : Spring oilseeds	12 :Tubers and roots
8 : Soy	13 : Orchards
9 : Sunflower	

- QGIS software :
 - Open NDVI and Land Cover mask
 - "Segmentation" (OTB)
 - Geometric corrections

"Smooth" + "Buffer" + "Zonal Statistics"

- Algorithm : meanshift
- Spatial radius : 30 pixels
- Range radius : 10

- QGIS software :
- Open NDVI / SI VV image / Incidence Angle → Raster
- Open Segmentation filtered \rightarrow Shape
- "Zonal Statistics"
- Export to CSV

1	DN	M_VVmean	M_INCmean	M_NDVImean	
2	17	0.02	40.29	56.87	
3	18	0.05	40.40	51.93	
4	20	0.05	40.41	10.93	
5	23	0.08	40.39	16.00	
6	24	0.12	40.58	62.10	
7	25	0.08	40.65	43.16	
8	26	0.07	40.66	65.15	
9	30	0.07	40.64	9.93	
10	35	0.06	40.60	42.39	
11	41	0.03	40.43	66.09	
12	52	0.06	40.68	11.65	
13	53	0.08	40.63	11.15	
14	56	0.08	40.59	61.21	
15	57	0.07	40.71	43.38	

Python IDLE

- QGIS software :
 - Open the "Estimation Soil Moisture" \rightarrow Text file
 - Open the RPG filter \rightarrow Shape
 - Join both tables by ID

4°14,10′E

22

4°8,10'E

Inversion Model :

- Based on NN technique \rightarrow Machine learning method trained on training dataset \rightarrow Predicting Moisture
- Training is done using **synthetic data** derived from physical and empirical models (IEM + WCM)

DATA PRE - PROCESSING

Land Cover Mask

- QGIS software :
 - Open Land Cover vector
- "Rasterization" (OTB) + Raster calculator
 - + SuperImpose (OTB)
- Expression :

