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Snow avalanches

@INRAE

Complex snow flows with different release processes, flow regimes,
snow types, seasonality, etc.

Constraining factors for avalanche activity:
Topography;
snow and weather parameters.
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Risks due to show avalanches

o Disaster risk for people, settlements, critical infrastructures, forest stands, etc.

o Wider risks: compromise between safety and sustainability of mountain communities,
biodiversity conservation versus grey protection structures, etc.
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Short and long term forecasting

o Short term forecasting:
- When closing a road? A ski slope?
- When evacuating a settlement?
- Forecasts conditional to snow and
weather (traffic) conditions

o Long term forecasting:

- Land-use planning (lack of space): where to “draw the line”? Building defense structures?

- Return levels
- “Unconditional” modelling
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Data sources

[ 4
Office National des Foréts

o Data difficult/dangerous to acquire overall,

sparse/lacunar snow avalanche time series.

o In France “excellent” data:

- Avalanche database “EPA” (~4000 selected paths);

- Top-seed measurements (LIDAR, remote sensing);

- Archival and paleo-environmental data;

- Surrogate data (results from snow
simulations).

cover

o “Full set” of environmental data: past and future snow
and weather conditions, past land cover and population
changes, etc.

Land Cover Class

1 Agro-Silvo-Pastoral™ Other
B Forest l- Urban

Land cover changes in a high
valley of the French Alps.
(Zgheib et al., GPC, 2020)
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Short-term forecasting (1)

FRANCE

AVOS5 COTES, DANS UN
CLIMAT QUI CHANGE

o Avalanche operational forecasting: real time snow and weather data assimilation and
modelling and expert evaluation of a 5 classes hazard level.

o Model-based forecast: “Classical” classification (2-5 classes) as function of forecasted
snow conditions.

o No “full” risk assessment but risk for skiers by taking into account additional loading
(accidental trigger).
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Short-term forecasting (2)

Use of basic to deep learning techniques.

Distinction between “forecast” and “nowcast”
contexts.

Standard tools for forecast evaluation: confusion
matrix, accuracy and error rates,
specificity/sensitivity, ROC curves, etc.
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Short-term forecasting (3): recent developments

o Refined description of snow stratigraphy/physics as predictors to improve classification;
o Ensemble and probabilistic forecasts.
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Numerical-probabilistic long term forecasting (1)

o Evaluation of unconditional return levels
usable for hazard and risk assessment in
runout zones.

o Physically based model with probabilistic
framework: not explicit for “outputs”, but
multivariate and using real topography and
“robust” physics.

o Inference on local series, spatial
extrapolatlon to "fill gaps . Avalanche simulation for hazard mapping, © M. Naaim, INRAE

Local data;: modelinference

=and ot : Propagation
andom input vector - model & - Random output vector
X = (I:.:,I:. ) (topography) YV, = G (:-:3-)

x” : unobservable variable
(e.g. snow friction)

x' : observable variable . . L , . , . .
(e.g. snow depth) Simulations: joint distribution of the hazard on the studied site

Principle of a numerical-probabilistic approach associated with Bayesian inference (Eckert et al., 2012)



Numerical-probabilistic long term forecasting (2)

o Pseudo POT
model relying on
a depth-
averaged flow
code: provides
outputs that
include relevant
physics .

o Bayesian
inference
(MCMC
techniques).

o Different
compromises
between
computation
times and
realism of the
physical
description of
the flow.
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The statistical-dynamical model Eckert et al. (2010) provides the one-to-one relation between runout distance
and return period, and, for each runout distance, the joint distribution of all other variables.




Snow avalanche risk for buildings and people inside

R, < E,[V(zy)]=[p(y)V(z, , o
‘ y[ ( y)] p(y) ( y)dy o Evaluation of death rates (individual risk) as
V(z,y): deterministic link between hazard magnitude and damage function Of Space in the runout zone.

level for the element at risk z;
p(y): (stochastic model: describes the variability on the studied site.

o Expected damage as standard approach /

v alternatives (VAR, CTE) in development.
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8 | o Empirical or numerical data for vulnerability.
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The grand-challenge: non-stationarity

Past

o Climate and socio-
environmental
changes affect
hazards and risks
drastically

Nov Dec Jan Feb Mar Apr May Jun Jul

B dry-snow
igh
B9 [ wet-snow

o Big picture gradually
emerges, but slope-
scale projections still
unavailable as
function of horizon /
warming rate

Medium

Present

§
*

Nov Dec Jan Feb Mar Apr May Jun Jul

Medium

A conceptual model of ongoing
changes from a review of methods,
data and established facts, Eckert et
al., NREE 2024
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Take home messages

o Snow avalanches and related
risks:
- Strong impacts (“local” scale);
- Highly  non-stationary (up to
emergence / disappearance).
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Massive dense avalanche deposit in the French Alps © INRAE.
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o For the future : perspective 73 e
and needs ) |

- Rather abundant data especially
in France, but divergent spatio-
temporal scales: challenge of
combination;

- More widely, efforts to integrate
existing modelling tools

- A small world: need for new
human resources.
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Chamonix Mont Blanc, May 2023, picture @ONF



